On this page

Undergraduate courses

We provide a comprehensive list of undergraduate courses that students generally encounter throughout their academic studies. These courses range from foundational to specialized and advanced topics without specific year-by-year categorization.

2023 - 2024 courses

Following is the most updated list of undergraduate courses for the academic years 2023-2024. This selection encompasses the newest curriculum adjustments and offerings.

MBIO 1010 - Microbiology I (3) L

An introduction to the general principles of microbiology including cell structure, physiology and molecular microbiology utilizing examples from ecologically beneficial as well as industrially relevant and pathogenic microbes.

The lab introduces the students to the methods used for safely handling microorganisms. They will cover cultivation, enumeration and purification of bacteria, analysis of food samples, staining techniques, media preparation, body microflora, selective and differential media, use of the spectrophotometer to determine growth rate, biochemical tests and yogurt productions.

MBIO 1220 - Essentials Of Microbiology (3)

An introduction to the essential principles of microbiology including immunity, with emphasis on microbial diseases.

The course is required for students in the Faculty of Nursing and is also available through Distance Education.

MBIO 1410 - Introduction of Molecular Biology (3)

An introduction to the mechanisms, themes, and patterns that are present in the molecular biology of organisms ranging from bacteria to humans. The basic application of molecular biology to disciplines such as medical microbiology, criminology, genetic fingerprinting, genome sequencing and bioinformatics will be discussed.

MBIO 2020 - Microbiology II (3)

This course is the introduction to microbial genetics built around the concept of information flow in cells. Major topics include synthesis of nucleic acids and proteins in microbes, chromosomal replication and bacterial growth, transcription and translation as coupled stages of gene expression, post-translational modifications of proteins, regulation of transcription in bacteria, families of bacterial and animal viruses, their modes of reproduction and pathogenicity, bacteriophages and lateral gene transfer, retroviruses and reverse transcription, other acellular genetic systems, mutations and mechanisms of genetic homeostasis in bacteria (DNA repair systems), modes of gene transfer in bacteria.

Lab exercises are used to support the lecture material. They include testing for antibiotic resistance, gene regulation, use of the spectrophotometer, isolation and propagation of bacteriophage, mutation and DNA repair and gene transfer.

MBIO 2230 - Introductory Biogeochemistry (3)

An examination of the geological, chemical, and biological processes that determine structure and function on planet Earth with emphasis on the role of microorganisms and human activity as biogeochemical agents of change. 

Selected topics include the origins of life, the universe and everything, understanding of steady state, weathering and its effect on the planet, the importance of tectonic plate motion and volcanism, nutrient cycles, redox potential, the history of climate change, the sixth mass extinction-causes and potential outcomes.

MBIO 2360 - Biochemistry I (3)

Structure and properties of amino acids and proteins, mechanisms of enzyme action and elementary enzyme kinetics, chemistry of carbohydrates, bioenergetics, energy metabolism, lipid and steroid biochemistry, nucleic acid and protein synthesis. The laboratory experiments are designed to demonstrate general biochemical techniques.

These include spectrophotometry, pH and buffers, properties and kinetics of enzymes, measurements of cellular components and specific separation techniques i.e. electrophoresis, paper chromatography, adsorption chromatography, gel filtration chromatography and ion-exchange chromatography.

MBIO 2420 - Introduction to Virology (3)

An introduction to the general principles of eukaryotic virology, with emphasis on animal virus systems. These principles will be reinforced and expanded to deal with specific viruses that cause acute and chronic infections in humans.

Topics to be discussed include the molecular structure of viruses, the basic multiplication strategies of the major virus families, mechanisms of host immune evasion and viral latency, persistence and oncology.

MBIO 2370 - Biochemistry II (3)

Structure and properties of amino acids and proteins, mechanisms of enzyme action and elementary enzyme kinetics, chemistry of carbohydrates, bioenergetics, energy metabolism (glycolysis, TCA cycle, etc.), photosynthesis, lipid and steroid biochemistry, nitrogen metabolism, nucleic acid and protein synthesis, integration control of metabolism.

The laboratory experiments are designed to demonstrate general biochemical techniques. These include spectrophotometry, pH and
 buffers, properties and kinetics of enzymes, measurements of cellular components, and specific separation techniques i.e. electrophoresis, paper chromatography, adsorption chromatography, gel filtration chromatography and ion-exchange chromatography.

MBIO 2710 - Biochemistry 2: Catabolism, Synthesis and Information Pathways

An introductory course dealing with the basic metabolic processes that occur in living cells, including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis of DNA, RNA and proteins and the regulation of these processes.

MBIO 2750 - Elements Of Biochemistry 2 (3)

The continuation of CHEM 2730/MBIO 2730, deals with nitrogen and lipid metabolism, representative biosynthetic pathways and synthesis and importance of DNA, RNA and proteins.

Primarily for students in agricultural and food sciences and four-year biological sciences programs in science

MBIO 2780 - Elements Of Biochemistry (3) L

The course material deals with nitrogen and lipid metabolism,
representative biosynthetic pathways and the synthesis and importance of DNA, RNA and proteins.

The course is intended for students in agriculture and biological science programs in science and may not be used as part of an honours, major, general, or minor program in chemistry or microbiology.

MBIO 3000 - Applied Biological Safety (3)

This course will include topics in principles of containment laboratories, select agents and the infectious disease they cause. Diagnostic evaluation of infectious disease covering applied biosafety research principles in the control and study. Research principles for laboratories and industry and containing a bioterrorist attack using applied biosafety principles.

MBIO 3010 - Mechanisms Of Microbial Disease (3)

An introduction to the immune response, microbial pathogenesis, bacterial and viral diseases and antimicrobial agents.

MBIO 3030 - Microbiology III (3) L

The course will include an introduction to microbial genomics and molecular techniques used for the analysis of microbial metabolism using these tools, the physiology of microbial cell walls, transport and motility as well as microbial metabolism as related to ATP production, respiration, fermentation and carbon fixation will be discussed.

MBIO 3032 – Microbiology III (physiology and metabolism)

The course will include an introduction to microbial growth and genomics approaches used for the analysis of microbial physiology and metabolism. Using these tools, the physiology of microbial cell walls, transport and motility as well as microbial metabolism as related to ATP production, respiration, fermentation and carbon fixation will be discussed.

Not to be held with MBIO 3031 prerequisites: MBIO 2020 (MBIO 2021) (C) and one of MBIO 2710, MBIO 2711, CHEM 2710, CHEM 2711 (C).

MBIO 3280 - Microbial Communities (3) L

This course will examine microbial communities which will be discussed in terms of their composition and physiological adaptations and their effects on their abiotic and biological surroundings. Topics will include nutrient cycling, biodegradation and adaptation to extreme functions. Methods for quantitation of microbial biomass and biological activity will be discussed. The labs complement the material discussed in the lecture.

Labs include the construction of a Winogradsky column, biofilms, nitrification and denitrification in soil, preparation of selective media for isolation of fungi, actinomycetes and bacteria from soil, water analysis for coliforms, antibiotic production by actinomycetes and most probable number technique for sulfate-reducers.

MBIO 3410 - Molecular Biology (3)

Structure, organization and expression of genes in prokaryotes and eukaryotes. Principles of gene manipulation technology.

MBIO 3430 - Molecular Evolution (3)

Molecular biology and evolution, RNA world, origin of life and genomes, micro- and macroevolution, molecular phylogeny.

MBIO 3450 - Regulation Of Biochemical Processes (3)

RNA polymerase and transcription, sigma factors in bacterial differentiation, operon regulation focusing on catabolic and biosynthetic operons, antigenic variation, two-component signal transduction, quorum sensing and post-transcriptional control mechanisms.

MBIO 3460 - Membrane & Cellular Biochemistry (3) 
L

Isolation and characterization of membrane fractions, structure, properties and analyses of membrane lipids, structure, properties and analyses of membrane proteins, model membrane systems, membrane dynamics and mobility of membrane components, symmetry of membrane components, membrane receptors, membrane recycling, membrane transport, membrane biogenesis and trafficking.

Laboratory exercises include lipid isolation, saponification, extraction/evaporation, thin layer chromatography and lipid spectrophotometric analysis, cell membrane isolation, protein determination and polyacrylamide gel electrophoresis analysis.

MBIO 3472 - Microbial Systematics (3)

Characterization and classification of the major group of micro-organisms. Bases for divisions and the relatedness among organisms will be studied.

MBIO 3600 - Molecular Microbiology Techniques (3)

A laboratory-based course, intended to teach the fundamental techniques required to work in a modern molecular microbiology laboratory. Students will develop a thorough understanding of the theory underpinning the techniques introduced in this course, laboratory skills in current molecular microbiology techniques and application of techniques to investigate scientific questions, such as the identification of unknowns.

Learning outcomes include the development of technical skills, competency in following protocols, presentation of results and scientific writing.

MBIO 3700 - Experimental Microbiology Laboratory (3)

This laboratory course will introduce students to the morphological and physiological study of microorganisms. Students will reinforce their basic laboratory skills while carrying out discovery-based experiments involving microscopy, antibiotic susceptibility testing, bacterial enumeration, physiology and identification.

MBIO 4020 - Immunology (3)

Chemical and physical properties of antigens and antibodies and their interactions, cells and tissues of the immune system and their regulation in normal immunity and in immune dysfunctions.

MBIO 4030 - Special Topics in Microbiology (3)

Microbiology is a very broad field that encompasses a wide range of specialized topics. In this course, students can pursue a specific topic in detail through lectures, assigned readings, seminars and research projects. The course is normally restricted to third and fourth-year Honours and Major students.

Topics to be covered by the course shall be decided by the instructor(s) in consultation with the student(s) and with the approval from the Department.

Grades are based on written assignments and reports. The evaluation may also include oral presentation and poster presentation(s).

MBIO 4410 - Virology (3)

A comprehensive examination of fundamental properties of viruses, virus taxonomy and the different ways in which viruses replicate. The ways viruses cause disease and experimental methods used in virology also will be examined.

MBIO 4440 - Systems Microbiology (3) 
L

The course integrates microbiology concepts from a systems viewpoint looking at all the system’s behaviours together within the setting of its environment. Genomics, transcriptomics, metabolomics and proteomics data will be used to create an integrated model of how a bacterial cell functions.

Functional genomics and large-scale bacterial genetics will be used to analyze case studies.

NB:  For students requiring to take MBIO 4440 next Winter for graduation (either in June 2022 or February 2023), we will allow any other MBIO course as the 4000 level or any 4000 level courses in CHEM, BIOL or PHAC on the Microbiology options list to act as an acceptable substitution.

MBIO 4442 - Research in Systems Microbiology

Systems microbiology integrates physiological information and functional genomics (genomics, transcriptomics, proteomics, metabolomics) data, as well as large-scale mutagenesis and chemogenomics to create models of the complex interactions within microbial cells to understand how a bacterial cell functions as an integrated whole.

Applications to more complex microbial communities will also be discussed.

MBIO 4480 - Microbes in our Environment (3) L

High throughput molecular, biochemical, and genomic approaches to the study of microbial functional diversity within microbial biomes and communities will be presented using specific examples mainly from human-impacted or human-associated environments including the human microbiome, microbial communities involved in waste treatment and in bioremediation.

Strategies for bioprospecting for novel microorganisms with relevant properties will also be discussed.

MBIO 4520 - Industrial Bioprocesses (3) 
L

The course will cover bioprocesses for a range of commercially important health care and industrial products including antibiotics, vaccines, steroids, therapeutic recombinant proteins, monoclonal antibodies and ethanol. 

Bioreactor design and control for these bioprocesses, metabolite engineering for product enhancement, applied engineering, animal cell technology and downstream processing will also be included.

MBIO 4530 - Project In Microbiology (6) L

Projects are selected in consultation with faculty members, one of whom will serve as the student’s supervisor. The intention is that the student will choose a research project in an area that is of interest to them.

MBIO 4540 - Biological Energy Transduction (3)

The general topic is the transformation of energy in bio-membranes. Specific topics include introduction to the chemiosmotic theory, relevant elements of thermodynamics, specific methods of membrane bio-energetics, molecular mechanisms of energy generation (e.g. respiration, photosynthesis, bacteriorhodopsin) and utilization of ion motive forces in ATP synthesis as well as in osmotic and mechanical work.

MBIO 4602 - Molecular Genetics of Prokaryotes (3) 
L

Topics discussed will include the following: mechanism, regulation, and fidelity of DNA replication of chromosomes and plasmids, reversal, repair and tolerance of DNA damage, mechanisms and regulation of genetic exchange (conjugation, transformation, transduction, and transposition) molecular tools and applications, molecular mechanisms that contribute to bacterial pathogenesis.

MBIO 4610 - Molecular Genetics of Eukaryotes (3) L

Eukaryotic genome organization, chromatin structure and regulation, control of eukaryotic gene expression, via transcriptional and translational mechanisms, molecular genetics of genome rearrangements and mechanisms of oncogenesis.

MBIO 4612 - Molecular Genetics of Eukaryotes

A comprehensive study dealing with replication and expression of DNA, genome structure and the involvement of genes in diseases such as cancer.

MBIO 4672 - Applied Molecular Biology (3)

The objective of this course is to introduce and describe current molecular techniques and their application to biological problems. Topics include plasmids and cloning, sequence analysis, constructing and recombining insertion mutants, site-directed mutagenesis, protein overexpression as well as web-based bioinformatics.

Assignments are designed to provide the student with experience in molecular cloning techniques with an emphasis on mutagenesis.

MBIO 4700 - Computational Molecular Biology (3)

The introduction to bioinformatics concepts was achieved by applying computational tools to analyze sequence/molecular data relevant to Microbiology. The course will introduce existing bioinformatics tools that can be applied to biological data such as sequence alignments, RNA folding, gene and protein structure prediction, molecular phylogenetics and genomics.

Graduate courses

Course numbers and CRNs can be found by searching the Class Schedule on Aurora.

2023 - 2024 courses

Following is the updated list of graduate courses for the academic years 2024-2025. This compilation reflects the latest curricular changes and offerings for graduate students.

MBIO 7010 – Graduate Seminar in Microbiology 1 (MSc students, mandatory)

The goal of this course is to train students to effectively communicate science, particularly in the form of a seminar. The students will attend departmental seminars covering areas of interest to the faculty and students in the graduate Microbiology program.

The students will then discuss the seminars in a separate class. The students will also deliver oral presentations on their research topics and will write an assignment.

MBIO 7020 – Graduate Seminar in Microbiology 2 (PhD Students, mandatory)

The goal of this course is train students to effectively communicate science, particularly in the form of a seminar. The students will attend departmental seminars covering areas of interest to the faculty and students in the graduate microbiology program.

The students will then discuss the seminars in a separate class. The students will also deliver oral presentations on papers outside their field and will write assignments.

MBIO 7030 – Graduate Seminar in Microbiology 3 (for students in need of extra credits)

This course is available only upon discussion with the supervisor and permission of instructors and head.

MBIO 7040 – Graduate Microbiology (MSc mandatory)

Topics and methodologies in the field of microbiology will be covered. The course format includes five modules.

PhD writing course (listed with several different course numbers)

The focus of the course is for the student to learn to prepare a literature review on a topic of their interest or related to their PhD thesis. The process may include preparing draft and final documents; and participating in peer review and oral presentations.

The course is offered under several numbers, so students can choose the one that aligns most closely with their PhD research. This will give them a course number or name on the transcript that is linked to their research. All students in the following courses will work as a single cohort and be advised and graded by the same instructors.

These courses assume that students have a strong background in the area they are writing about. They are mainly self-directed, not lecture-based and will not provide students with background to a particular topic. With this understanding, students from other departments may consult with the instructors to determine if they could be permitted to register.

The PhD course can be taken with any of the following numbers. Note that these are spanned courses and require student participation in Fall and Winter Terms.

  • MBIO 7050 Environmental Microbiology, PhD students
    • Part A in Fall Term
    • Part B in Winter Term
  • MBIO 7060 Microbial Interactions, PhD students
    • Part A in Fall Term
    • Part B in Winter Term
  • MBIO 7070 Bioprocessing, PhD students
    • Part A in Fall Term
    • Part B in Winter Term
  • MBIO 7100 Advanced Topics in Molecular Biology, PhD students

PhD students' additional courses

Following are the additional courses for training in literature review and advanced writing skills specifically for PhD students.

Fall 2024: Register through Aurora with the corresponding number, depending on the topic of interest. Students outside the program need permission from the instructors and head.

MBIO 7050 – Environmental Microbiology (PhD students)

Topics and current developments in the field of environmental microbiology will be covered. A combined lecture, discussion, assignment and seminar format may be used. Inquire at the department for availability.

MBIO 7060 – Microbial Interactions (PhD students)

Topics and current developments in the field of environmental microbiology will be covered. A combined lecture, discussion, assignment and seminar format may be used. Inquire at the department for availability.

MBIO 7070 – Industrial Bioprocessing (PhD students)

Topics and current developments in the field of environmental microbiology will be covered. A combined lecture, discussion, assignment and seminar format may be used. Inquire at the department for availability.

MBIO 7100 – Advanced Molecular Biology (PhD students)

The different topics are covered by performing oral presentations and writing literature reviews.

Contact us

Department of Microbiology
213 Buller Building
University of Manitoba
Winnipeg, Manitoba, R3T2N2 Canada

204-474-9372
Our office is open Monday to Friday, 8:30 a.m. to 4:30 p.m.