“It is the recommendation of the Manitoba Environment Control Branch that the City of Winnipeg’s proposal to fog in residential areas be rejected until they can provide the Clean Environment Commission with sufficient data to show that fogging is of benefit in reducing mosquito populations to satisfactory levels, and that such benefits outweigh any adverse environmental effects which may occur.”

(July 30, 1975)
Medical Emergency
Absence of Evidence for Effectiveness of Adulticiding

- Municipal Board of Man. 1974
- Alberta Environ. Conserv. Author. 1974
- Man. Environ. Control Branch 1975
- MN Environ. Control Citizens Assoc. 1977
- Gov. Perpich of MN - - Expert Panel 1984
- Symp. Mosquito Control, MN Acad. Sci. 1985
- Dr. A.J. Thorsteinson
Absence of impact of aerial malathion treatment on Aedes aegypti during a dengue outbreak in Kingston, Jamaica.

Ministry of Health, Kingston, Jamaica
Evaluating ultra-low volume ground applications of malathion against Aedes aegypti using landing counts in Puerto Rico, 1980-84.

“… during the 5-year period, 1980-84 malathion applied by Fog Generators was not effective against Aedes aegypti. “

“… the seasonal variation of mosquitoes was inverse to that of reported dengue incidence.”
FOR WIDELY DISPERSED AGENTS SUCH AS DIELDRIN AND DDT, TO WHICH THE POPULATION-AT-LARGE IS GENERALLY AND UBIQUITOUSLY EXPOSED, HUMAN EXPERIENCE IS UNLIKELY TO PROVIDE ANY MEANINGFUL INDICATION OF SAFETY OR HAZARD.

(S. Epstein)
Adverse Effects

Current Dogma

Malathion is much less toxic to humans than to insects.

Malathion is registered by the Federal Government and when used properly is safe and effective.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>LD50 in rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>oral</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>((\text{C}_2\text{H}_5\text{O})_2\text{P-O-P-(OC}_2\text{H}_5)_2)</td>
<td>1.1</td>
</tr>
<tr>
<td>Dichlorvont</td>
<td>((\text{CH}_3\text{O})_2\text{P-O-CH-CCl}_2)</td>
<td>80</td>
</tr>
<tr>
<td>Malathion</td>
<td>((\text{CH}_3\text{O})_2\text{P-CH=COOC}_2\text{H}_5)</td>
<td>1375</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>LD50 in rats</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oral</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>((\text{C}_2\text{H}_5\text{O})_2\text{P-O-P-(OC}_2\text{H}_5)_2)</td>
<td>1.1</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>((\text{CH}_3\text{O})_2\text{P-CH=CCl}_2)</td>
<td>80</td>
</tr>
<tr>
<td>Malathion</td>
<td>((\text{CH}_3\text{O})_2\text{P-CH=COOC}_2\text{H}_5)</td>
<td>1375</td>
</tr>
</tbody>
</table>
Acute Toxicity

Organophosphate poisoning

- **Muscarinic**
 - increased secretions and sweating
 - abdominal cramps, defecation
 - bradycardia to heart block
 - urination
 - miosis

- **Nicotinic**
 - muscular weakness, twitching
 - dyspnea, cyanosis
 - increased blood pressure
 - pallor

- **Central nervous system**
 - anxiety, restlessness, headache, apathy, confusion, slurred speech, ataxia, convulsions
Acute Toxicity

“Using U.S. Poison Control Center records to identify bystander pesticide exposures: a one-year surveillance of four southeastern states.”

“The exposed persons were seen in a health care facility. The most implicated substance was malathion (30.4%), while 19.6% did not know the exposure substance.”
Acute Toxicity

“Malathion Exposure Associated with Acute Renal Failure”

Individual spraying home interior
Acute Toxicity

IMPURITIES

“Impurities in Malathion Found to Disable the Body’s Natural Ability to Detoxify Malathion”

“The Toxicological Properties of Impurities in Malathion”

In Pakistan, 7500 sprayers, 2800 poisoned, 5 deaths
Isomalathion: formed during storage
Acute Toxicity

BREAKDOWN PRODUCTS

formation of malaoxon
Acute Toxicity

Individuals with atypical or deficiency in cholinesterase

- 1/2800 Canadians of European ancestry
 high sensitivity
- 3-4 % of Canadians
 intermediate sensitivity
- Cholinesterase deficiency
 liver disease, malnutrition, infection
Acute Toxicity

Local anecdotal effects of fogging/spraying

- Acute irritant reaction
- Fainting and incapacitation
- Menstrual disorders
- Convulsions of animal pets
- Flu-like symptoms
- Decrease in brain enzyme in fish
Epidemiological studies

Some Examples
Long-term Toxicity

Malathion, chlordane and 2,4-D were associated with increased risk.

The concentrations used are comparable to those found in blood following various non-lethal human exposures to pesticides.

These results showed that parathion and malathion increased PCNA and induced mutant p53 protein expression of MCF7 cells in comparison to controls.
Long-term Toxicity

“We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors: malathion (OR, 1.83; 95% CI, 1.31-2.55).”

“…. Aspirin might have a contributory role. Malathion is another putative cofactor.”
Cost/benefit ratio of a 50-year mosquito abatement program

• Cost
 Financial: $200,000 per single round of fogging
 Health and environmental: unknown

• Benefit
 Nuisance index: unknown
 Disease risk: unknown
A first step towards a rational program of mosquito abatement

In response to a request by Governor Perpich the Minnesota Department of Health assembled a panel of experts from across the U.S.

This panel concluded that information about mosquitoes was scant in Minnesota and that considerable information would have to be generated before mosquito management could be seriously contemplated or evaluated.

Ethical Use of Animals

• Even the most primitive species are not to be subjected to potentially harmful procedures, unless a rigorously designed protocol justifies performing the procedure.

• The proposed procedure must satisfy the criterion of yielding useful data that can benefit mankind.