Mortality Improvement for Canadian Pensioners: Proposed Projection Scales
Louis Adam, FSA, FCIA
Université Laval, Quebec City, QC
47th Actuarial Research Conference
Winnipeg, Manitoba, 2012-08-03

1. Introduction

Acknowledgements:
– Financial support from Canadian Institute of Actuaries, and formerly from Chaire d'actuariat, Université Laval and SOA
– Data and support:
 • Office of the Chief Actuary (CPP)
 • Régie des rentes du Québec (QPP)
– CIA CCPME: Committee on Canadian Pensioners Mortality Experience
– and many reviewers, colleagues, students

CCPME
• Created in 2008 by CIA
• Commissioned two studies in 2009
• Data collected in 2010
• Data analysis and review 2010 and 2011
• Reports drafted and reviewed:
 – Registered Pension Plan Study in 2012
 – CPM Study in 2011 and 2012
• CIA Annual Meeting: June 2012 Presentation
CPM

• Canadian Pensioners Mortality = CPM
• Pensioner data only, from CPP and QPP administrators
 -- Separate and combined results
 -- Data comprehensive and high quality
 -- Data segmented by pension income level
 -- Almost 8 million exposed lives (86.9 M life-years exposure from 1967 to 2008)
 -- pensions payable since 1967

Messages, CIA June 2012 Session

1. It is time to change the Canadian standard for mortality tables for pension plans: Canadian evidence for this
2. Income is important for pensioner mortality (with time, gender, age, source)
3. Mortality trend: Higher improvements rates observed in recent past = troubling news
4. Impact might be material for many plans

2. CPM Study Phases

1: Get high quality data: CPP + QPP = CAN
2: Measure qx at recent point in time:
 -- 2005-2007, centered in 2006
 -- Phase II Report: May 31st, 2012
3: Measure mortality trends: projection scales
 -- With recent experience over 15 years for short term scale: 1992-2007 → 2006 to 2021
 -- Long term scale based on C/QPP Actuarial Reports

3. Methodology & Results, Phase II

• Deaths & Exposure measured
• 5 variables: source, gender, age, income, year
• Exact age, constant force of mortality for fractional ages
• Exact age compares to “Nearest Birthday”
• Provides point estimate and confidence intervals
• Graduation: Gompertz, modified at extreme ages, values within bounds of 1 std dev.
Income

• 5 income classes
• Split in % of C/QPP Maximum Pension
 – 1: <35%, 2: 35%-94%, 3: >95%
• Remove lower pensions (Class 1) to get proxy for mortality of pension plans members
 • Class 4 = Class 2 (mid) + Class 3 (high)
 • Class 5 = All income

Results shown here

• Ratios of q(x) : CPM-CAN/ UP-94 @ 2006 +
• 2006: No projection for CPM-CAN
• 2012: 6-Year Projection with short term scale
• UP-94: Scale AA, static proj. to 2006 or 2012

CPM vs UP-94 in 2006: ratios q(x) Male

CPM vs UP-94 in 2012: ratios q(x) Male
CPM vs UP-94: 2006 and beyond

- Male: depends on income class, but lower than UP-94 in 2012 until age 84
 - Class 4 ages 74-77: under 102%;
 - Wide gap between income classes,
- For Female: CPM mortality is lower (age<87)
- Projected to 2015, 2020: lower ratios
- Next Charts: compare Classes 2, 3 & 4 only
- Also: compare Sources CPP, QPP, CAN
4. Mortality Improvement Rate, Formulas

Next Slide show formulas for reference

Charts follow and illustrate trends

Excerpts from Phase III Draft Report (2012-07)

Formulas: force, prob., weights

Deaths and exposure (exact):
\[\hat{\mu}_x = \frac{D_x}{E_x} \]

Probability of death, from force:
\[\hat{q}_x = 1 - e^{-\hat{\mu}_x} \]

Variance of force, and of prob.:
\[\text{Var}(\hat{\mu}_x) = \sigma^2_x = \frac{\hat{\mu}_x}{E_x} = \frac{D_x}{E_x} \]
\[\text{Var}(\hat{q}_x) = \left(e^{-\hat{\mu}_x}\right)^2 \times \text{Var}(\hat{\mu}_x) \]

Weight:
\[w_i = \frac{1}{\text{Var}(\hat{q}_i)} = \frac{(E_i)^2}{(1-\hat{q}_i)^2 \times D_i} \]

Formulas: Regression

Improvement rate:
\[q_{\text{init_year},t}^\text{init_year} = q_{x,t}^\text{init_year} \times (1 - IR_x)^t \]

Regression on \(\ln(qx) \): linear form
\[\ln \left(q_{x,t}^\text{init_year} \right) = \ln \left(q_{x,t}^\text{init_year} \right) + t \times \ln \left(1 - IR_x \right) \]
\[y_i = \beta_0 + \beta_1 \times x_i \]

Weighted Linear Regression (Min \(W \), find slope):
\[W = \sum_{i=1}^{n} w_i \times (y_i - \beta_0 - \beta_1 \times x_i)^2 \]
Formulas: slope, IR_x
Slope factor, weighted linear regression:
\[
\hat{\beta}_{(w)} = \frac{\sum w_i x_i y_i - \left(\sum w_i x_i \right) \left(\sum w_i y_i \right)}{\sum w_i x_i^2 - \left(\sum w_i x_i \right)^2}
\]
Improvement rate: $IR_x = 1 - e^{\hat{\beta}_i}$

Formulas: bounds, R^2
Confidence interval: upper and lower bounds
\[
LB = \hat{\beta}_{(w)} - t_{\alpha/2,n-2} \times s_{\hat{\beta}} \quad rate(LB) = 1 - e^{LB}
\]
\[
UB = \hat{\beta}_{(w)} + t_{\alpha/2,n-2} \times s_{\hat{\beta}} \quad rate(UB) = 1 - e^{UB}
\]
Worth of regression: R^2
\[
R^2 = 1 - \frac{\sum w_i (y_i - \bar{y})^2}{\sum w_i (y_i - \bar{y})^2}
\]

15-Year Regression Ending in 2007, CAN-4-M, Age 70

15-Year Regression Ending in 1992, CAN-4-M, Age 70
15-Year Regression Ending in 2007, CAN-4-M, Age 95

CAN-4-M: 15 years in 2007

CAN-4-F: 15 years in 2007

Results vary by length of regression
Results of Last 30 Years (Males)

CAN-4-M Mortality Improvement Rate

Improvement by Classes, CAN-M:2,3,4,5

CAN-M Mortality Improvement Rate
by Income Classes
15-year Regression Period Ending in 2007

Improvement by Source, 4-M:CAN, CPP, QPP

4-M Mortality Improvement Rate
by Data Source (CAN, CPP, QPP)
15-year Regression Period Ending in 2007

5. Projection Scales, Proposal
• 15-year: 1992 to 2007 mirrored to 2006-2021
• CPM-CAN Experience
• Income class 4
• Long term: blend of CPP and QPP
 – 2060 assumptions in December 2009 Report
• Mid term: transition from 2021 to 2030
• Based on blended C/QPP 2020 assumptions, adjusted
• Impact: q(x) decreases faster, higher e(x) higher ã(x), higher actuarial liabilities
Proposal: 3 Projection Scales

Short term scale: 2006 to 2021, 15 years

\[\text{Male } q_{x+1}^{2006} = \text{Male } q_{x}^{2006} \times \left(1 - \text{Male } IR_{\text{Short term}} \right)^{k} ; 1 \leq k \leq 15 \]

Mid term scale: 2021 to 2030, 9 years

\[\text{Male } q_{x+k}^{2006} = \text{Male } q_{x}^{2006} \times \left(1 - \text{Male } IR_{\text{Mid Term}} \right)^{15} \times \left(1 - \text{Male } IR_{\text{Mid Term}} \right)^{15} ; 16 \leq k \leq 24 \]

Long term scale: 2030 and after

\[\text{Male } q_{x+k}^{2006} = \text{Male } q_{x}^{2006} \times \left(1 - \text{Male } IR_{\text{Long Term}} \right)^{24} \times \left(1 - \text{Male } IR_{\text{Long Term}} \right)^{24} ; k \geq 25 \]

Results

- Charts show impact on a generational basis
- UP-94 G: AA Projection Scale
- CPM-CAN-4 2005-2007: Short/Mid/Long Projection Scales
- Effect on complete life expectancy and PV of life annuity-due \(\hat{e}_{x} \) & $1,000 \times \hat{a}_{x} \)
PV, i=3%, Valuation in 2012: Male

<table>
<thead>
<tr>
<th>Age</th>
<th>UP-94G</th>
<th>CPM-CAN-4-M</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>17,032</td>
<td>17,506</td>
<td>2.78%</td>
</tr>
<tr>
<td>65</td>
<td>14,729</td>
<td>15,097</td>
<td>2.50%</td>
</tr>
<tr>
<td>70</td>
<td>12,434</td>
<td>12,648</td>
<td>1.72%</td>
</tr>
<tr>
<td>75</td>
<td>10,099</td>
<td>10,169</td>
<td>0.68%</td>
</tr>
<tr>
<td>80</td>
<td>7,876</td>
<td>7,811</td>
<td>-0.83%</td>
</tr>
<tr>
<td>85</td>
<td>6,032</td>
<td>5,727</td>
<td>-5.06%</td>
</tr>
</tbody>
</table>

Impact on PV at 3%: Male (generational)

- % Increase in $\dot{a}(x)$
- From UP-94 G to CPM-CAN-4-M
- Generational: with impact of projection scales
- 3 Valuation Years

PV, i=3%, Valuation in 2012: Female

<table>
<thead>
<tr>
<th>Age</th>
<th>UP-94G</th>
<th>CPM-CAN-4-M</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>18,201</td>
<td>18,857</td>
<td>3.61%</td>
</tr>
<tr>
<td>65</td>
<td>16,033</td>
<td>16,572</td>
<td>3.36%</td>
</tr>
<tr>
<td>70</td>
<td>13,812</td>
<td>14,198</td>
<td>2.80%</td>
</tr>
<tr>
<td>75</td>
<td>11,472</td>
<td>11,733</td>
<td>2.27%</td>
</tr>
<tr>
<td>80</td>
<td>9,146</td>
<td>9,255</td>
<td>1.19%</td>
</tr>
<tr>
<td>85</td>
<td>6,983</td>
<td>6,903</td>
<td>-1.14%</td>
</tr>
</tbody>
</table>

Impact on PV at 3%: Female (generational)

- % Increase in $\dot{a}(x)$
- From UP-94 G to CPM-CAN-4-F
- Generational: with impact of projection scales
- 3 Valuation Years
6. Conclusion

- Canadian pattern of mortality known
- Cost of pensions using UP-94 and AA may be underestimated
- Recent trend in mortality
 - faster decrease than thought with previous scales
 - not known when it will trail off
 - No crystal ball: use consensus for long term

Next Steps

- CIA: decision to release Phase II and Phase III reports
- CIA: may provide additional comments
- Discussion at CIA Fall 2012 Pension Seminar
- Actuarial Standards Board (Canada): decide future recommendations for mortality tables for pensions plans purposes

Thank you!
Length of Regression: CAN-4-F in 2007

CAN-4-F Mortality Improvement Rate
Various Lengths of Regression Period Ending in 2007

Improvement by Classes, CAN-F:2,3,4,5

CAN-F Mortality Improvement Rate
by Income Classes
15-year Regression Period Ending in 2007

Improvement by Source, 4-F: CAN, CPP, QPP

4-F Mortality Improvement Rate
by Data Source (CAN, CPP, QPP)
15-year Regression Period Ending in 2007

Impact on Life Expectancy: Male (generational)

• % Increase in complete e(x)
• From UP-94 G to CPM-CAN-4-M
• Generational: with impact of projection scales
• 3 Valuation Years
Impact on Life Expectancy: Female (generational)

- % Increase in complete e(x)
- From UP-94 G to CPM-CAN-4-F
- Generational: with impact of projection scale
- 3 Valuation Years

![Graph showing the impact on life expectancy for females generational.]