ENG 1450 – Introduction to Electrical & Computer Engineering Winter 2015

Course Objectives

This course introduces the fundamentals of electrical and computer engineering, including circuit analysis and selected topics on digital logic and electric motors. A number of standard electrical devices and components are presented in this course. The laboratory sessions involve the use of and familiarization with basic equipment and methods used in the workplace.

Course Content

The following topics will be covered:

• Fundamentals of electric circuits
• Kirchhoff’s laws, voltage and current division, independent and dependent sources
• Capacitors and inductors
• Sinusoidal AC circuits
• Introduction to operational amplifiers, semiconductor devices, optical devices, electric motors
• Boolean logic, logic gates, combinational logic.

Textbook

Requirements/Regulations

• Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
• It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University's General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
• No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
Accreditation Details

Attributes
A1: A knowledge base for engineering
A2: Problem analysis
A3: Investigation
A4: Design
A5: Use of engineering tools
A6: Individual and team work
A7: Communication skills
A8: Professionalism
A9: Impact of engineering on society/environment
A10: Ethics and equity
A11: Economics and project management
A12: Life-long learning

Competency Levels
1 - Knowledge (Able to recall information)
2 - Comprehension (Ability rephrase information)
3 - Application (Ability to apply knowledge in a new situation)
4 - Analysis (Able to break problem into its components and establish relationships)
5 - Synthesis (Able to combine separate elements into a whole)
6 - Evaluation (Able to judge the worth of something)

Learning Outcomes
1. Understand fundamental circuit theory and apply elementary circuit reduction and energy conservation techniques in the DC analysis of RLC circuits.
2. Apply circuit analysis techniques to solve electric circuits containing energy storage elements (L and C) in the sinusoidal AC steady state (phasor analysis).
3. Understand the representation of numbers in binary and hexadecimal notation and simple arithmetic operations in these bases. Understand basic Boolean algebra and logic, and apply this knowledge through the use of truth tables to design simple logic circuits from a written/verbal explanation of a problem.
4. Hands-on measurement and development of electric and digital circuits in a range of applications spanning the discipline.

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

Students must receive a minimum of 50% on the final examination in order to be eligible to receive a passing grade. Students who are unable to write the mid-term exam for medical (or other acceptable) reasons will have their final examination weighted to include the mid-term weighting. Students must complete all the laboratories in order to be eligible to receive a passing grade.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (%)</th>
<th>Method of Feedback</th>
<th>Learning Outcomes Evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>10</td>
<td>F, S</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Laboratories</td>
<td>20</td>
<td>F, S</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Term Test</td>
<td>20</td>
<td>F, S</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50</td>
<td>S</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

* Method of Feedback: F - Formative (written comments and/or oral discussion), S - summative (numerical grade)

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Updated: 03 January 2015