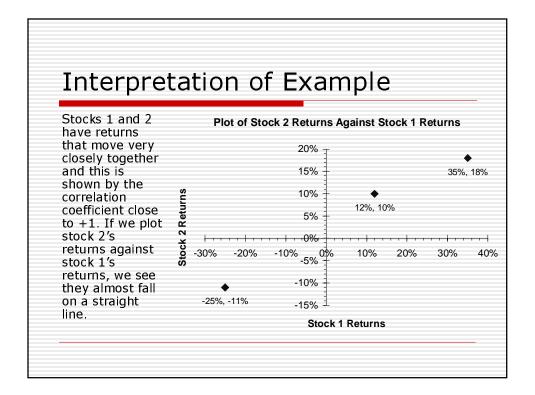
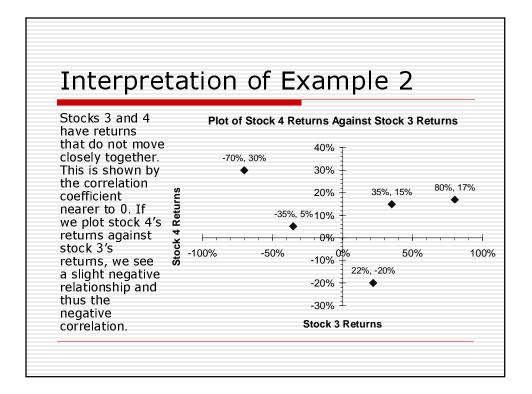
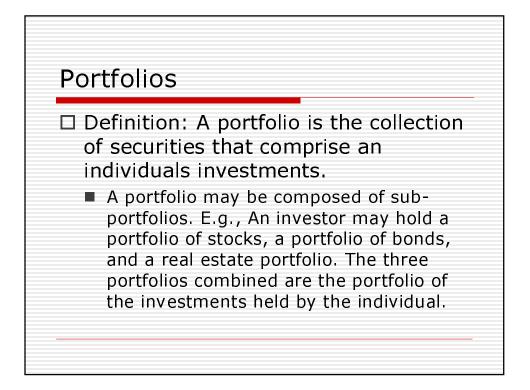

The formulas below are used to calculate the expected return and standard deviation of returns for a single security when you know the probability of possible states of nature and the corresponding possible returns that the security may generate.

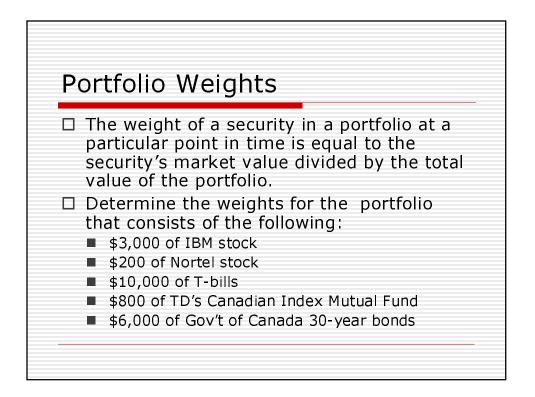
$$E[R_i] = \mu_i = \sum_{j=1}^k \left[R_{ij} \bullet \text{probability of state j} \right]$$

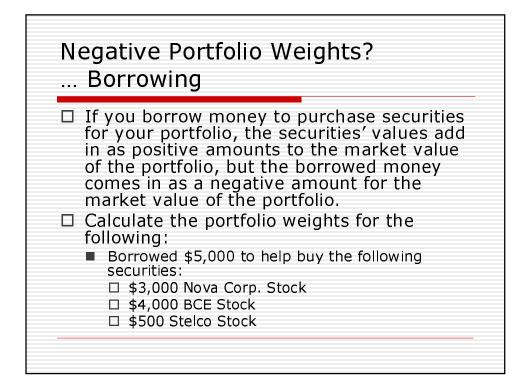

$$\boldsymbol{\sigma}_{i} = \left[\sum_{j=1}^{k} \left[\left(R_{ij} - \mu_{i} \right)^{2} \bullet \text{ probability of state j} \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

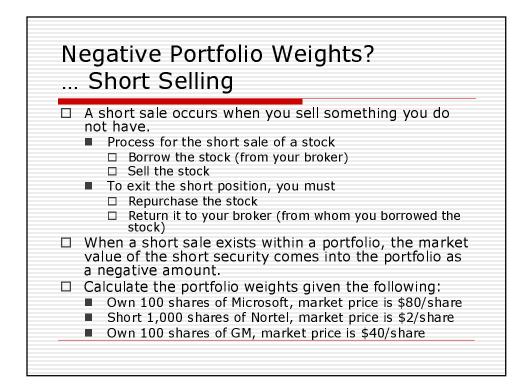
Exar	nple				
State of Nature, j	Probability	Stock 1 returns	$Prob_j \bullet R_{1j}$	(R _{1j} -µ ₁) ²	$Prob_j \bullet (R_{1j} - \mu_1)^2$
1. Recession	0.2	-25%	05	.133225	.026645
2. Normal	0.5	12%	.06	.000025	.000013
3. Boom	0.3	35%	.105	.055225	.016568
		Sum	.115	Sum	.043225
				Square Root	.207906

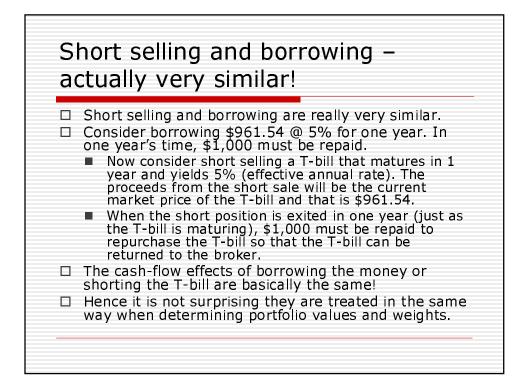

Deteri	ole 2 – So mine the ion of ret	expect	ed retur		andard
State of Nature, j	Probability	Stock 2 returns	$Prob_j \bullet R_{2j}$	(R _{2j} -µ ₂) ²	$Prob_j \bullet (R_{2j} - \mu_2)^2$
1. Recession	0.2	-11%			
2. Normal	0.5	10%			
3. Boom	0.3	18%			
		Sum	.082	Sum	
				Square Root	.102059

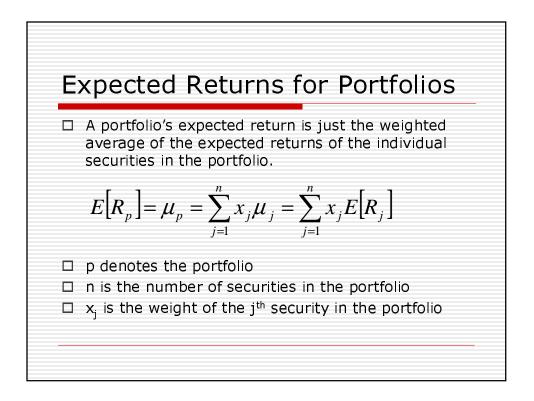


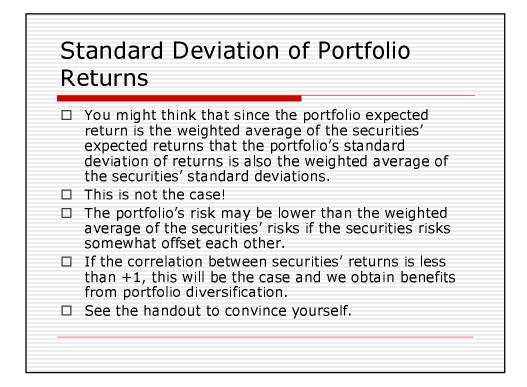

Exar	nple			
State of Nature, j	Probability	Stock 1 returns	Stock 2 returns	$Prob_{j}\bullet(R_{1j}-\mu_{1})\bullet(R_{2j}-\mu_{2})$
1. Recession	0.2	-25%	-11%	.2•(25115)•(11082) =.014016
2. Normal	0.5	12%	10%	.5•(.12115)•(.10082) =.000045
3. Boom	0.3	35%	18%	.3•(.35115)•(.18082) =.006909
Expected R	eturn = μ_i =	11.5%	8.2%	$Cov(R_1, R_2) = Sum \text{ of above}$ $= \sigma_{12} = .02097$
Standard Dev	viation = σ_i =	.207906	.102059	Corr(R_1, R_2) = $\sigma_{12}/(\sigma_1 \bullet \sigma_2)$ =.988281

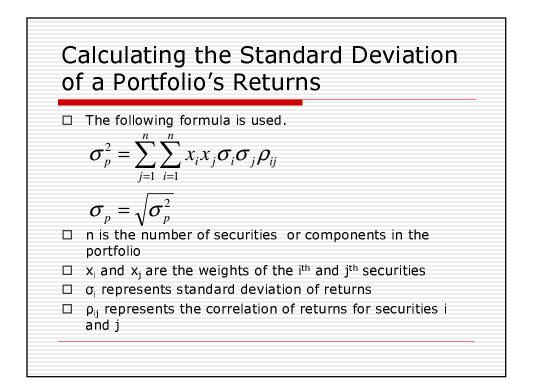



Example Calculat Correlat	e the	Cova	riance	and d 4 Returns
State of Nature, j	Prob. of j	Stock 3 returns	Stock 4 returns	$Prob_{j} \bullet (R_{3j} - \mu_{3}) \bullet (R_{4j} - \mu_{4})$
1. Bad Recession	0.13	-0.7	0.3	
2. Mild Recession	0.15	-0.35	0.05	
3. Normal	0.4	0.22	-0.2	
4. Mild Boom	.25	0.35	0.15	
5. Big Boom	.07	0.8	0.17	
Expected Return	η = μ _i =	0.088	0.0159	$Cov(R_3, R_4) = Sum of above$
Standard Deviatio	$n = \sigma_i =$.411237	0.188335	Corr(R_3, R_4) = $\sigma_{34}/(\sigma_3 \bullet \sigma_4)$ = -0.339303



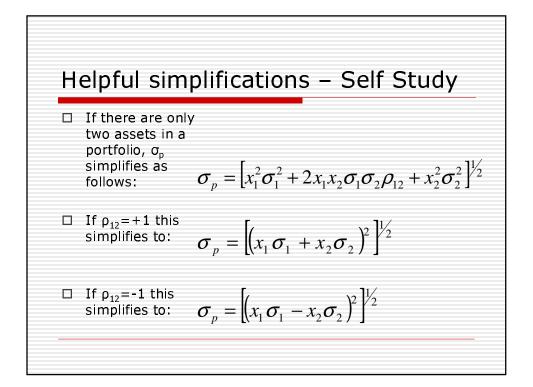




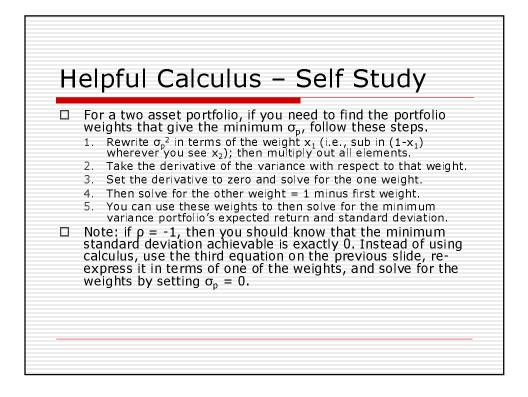


E×	am	nple				
Security j	E[R _j]	# Securities Owned	Current Market Price Per Security	Market Value	Portfolio Weight	E[R _j]∙x _j
1	15%	400	\$25.00	\$10,000.00	0.1	0.015
2	18%	500	\$30.00	\$15,000.00	0.15	0.027
3	22%	600	\$12.00	\$7,200.00	0.072	0.01584
4	25%	530	\$10.00	\$5,300.00	0.053	0.01325
5	4%	50	\$1,000.00	\$50,000.00	0.5	0.02
6	6%	500	\$25.00	\$12,500.00	0.125	0.0075
			Sum	\$100,000.00	1	9.859%

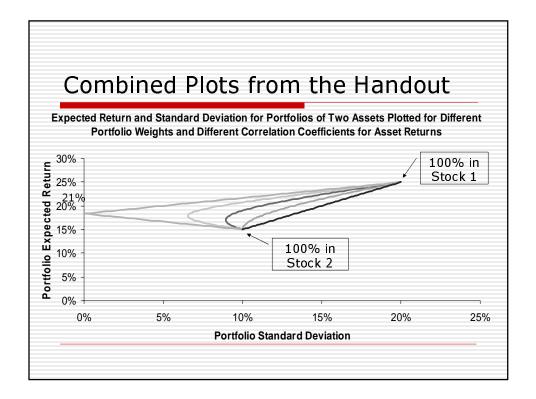
De	tern		f Study Expected osed as Fo		for the	9
Security j	E[R _j]	# Securities Owned	Current Market Price Per Security	Market Value	Portfolio Weight	E[Rj]∙xj
1	15%	600	\$25.00			
2	18%	300	\$30.00			
3	22%	600	\$12.00			
4	25%	630	\$10.00			
5	4%	-30	\$1,000.00			
6	6%	500	\$25.00			
			Sum	\$20,000.00	1	32.895%

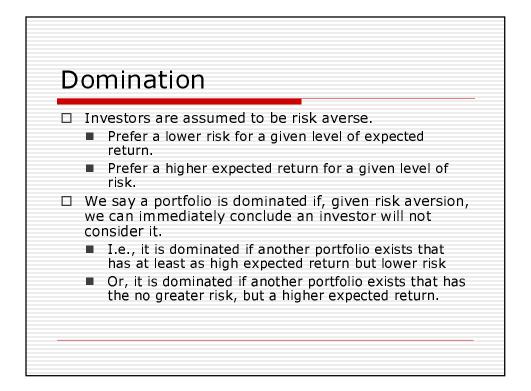

	e the data	helow to d	letermine th	e nortfo	lio's stan	dard
	eviation of r				10 5 5 61	uuru
	Standard	Portfolio	Correlation 0	Coefficient	s (row i, col	umn j)
Security	Deviation	Weights	Securities'			
1	0.25	0.2	ρ _{ij}	1	2	3
2	0.22	0.5	1	1	0.5	-0.2
_	-		2	0.5	1	0.15
3	0.3	0.3	3	-0.2	0.15	

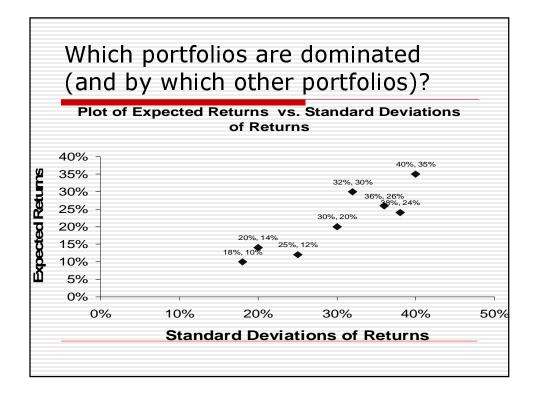
Exam				
Each cell i Summation T Row i, colum	able	ble below	is x _i x _j σ _i c	$\sigma_{j} \rho_{ij}$
$\mathbf{x}_{i}\mathbf{x}_{i}\sigma_{i}\sigma_{i}\rho_{i1}$	1	2	3	
1	0.0025	0.00275	-0.0009	
2	0.00275	0.0121	0.001485	
3	-0.0009	0.001485	0.0081	
Sum of cells	s is $\sigma_p^2 = \sigma_p =$			
Try calcula asset port	ating the	standar	d deviatio	ons of the two-

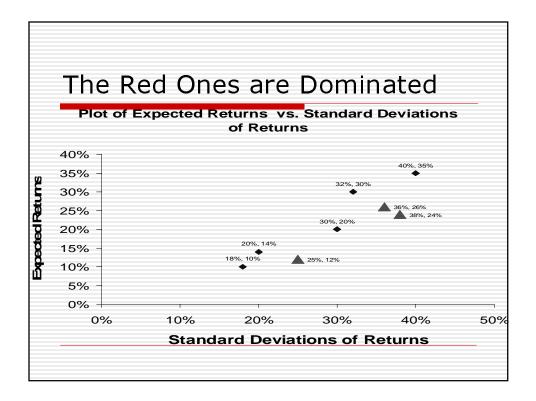

deviatio	n of r	eturr	าร			
Correlation C (row i, colum		İS		Security	Standard Deviation	Weights
Securities'				Coounty		
ρ _{ij}	1	2	3	1	0.22	0.4
1	1	0.3	-0.25	2	0.24	0.24
2	0.3	1	-0.1	3	0.26	0.36
3	-0.25	-0.1	1			
Summation T	able: Rov	wi, colu	ımn j			
$\mathbf{x}_{i}\mathbf{x}_{i}\sigma_{i}\sigma_{i}\rho_{ii}$		1	2	3		
1						
2					Variance =	
3					Std. Dev. = .	13291850

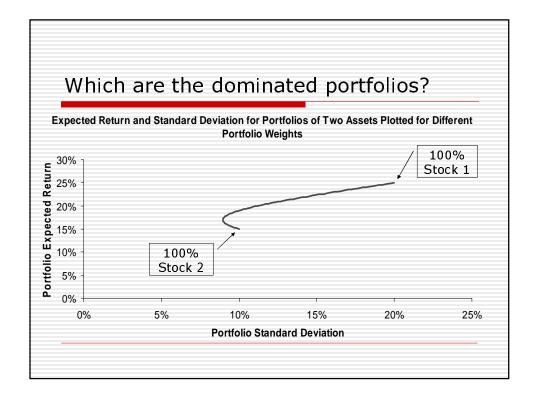
deviatio	n of r	eturı	าร			
Correlation ((row i, colum		ts		Security	Standard Deviation	Weights
Securities'				Coounty		
ρ _{ij}	1	2	3	1	0	0.5
1	1	0	0	2	0.2	0.4
2	0	1	0.4	3	0.3	0.1
3	0	0.4	1			
Summation 7	Table: Ro	w i, colu	ımn j			
$\mathbf{x}_{i}\mathbf{x}_{j}\mathbf{\sigma}_{i}\mathbf{\sigma}_{j}\mathbf{\rho}_{ij}$		1	2	3		
1						
2					Variance =	
3					Std. Dev. = .	09602083


г




Security	Expected Return	Standard Deviation
1	15%	0.4
2	25%	0.5
	and σ_p if $\rho_{12}{=}{\text{-1}}$ ar	
Selected Solutions	E[R _p]	σ _p
Selected Solutions $\rho_{12}=1$	E[R _p]	σ _p 0.425
Solutions		F




		answers			
				1	
Secu	rity Ex	pected Return	Standard D	Deviation	
1		15%	0.4		
2		25%	0.5	;	
			σ_{p} if $\rho_{12}=0.6$ σ_{r} if $\rho_{12}=-1?$		
		s that minimize not necessary			
 What ar and σ_p? Selected 	e the weights (Calculus is i	s that minimize not necessary	σ_{p} if ρ_{12} =-1? here.)	What is E[R _p]

