Spatial Representation of Heavy Fraction Collection and Analysis from Tell es-Sāfi/Gath, Israel

Sarah Richardson¹, Annie Brown¹, Haskel Greenfield¹, Aren M. Maeir²
¹ University of Manitoba; ² Bar-Ilan University

Introduction
Tell es-Sāfi/Gath is a large multi-period tell site with a long and rich cultural history located in central Israel atop a large crescent shaped hill. In the Early Bronze Age (EB) III (2900-2500 BCE), it is a large urban regional centre (c. 24 hectares in size). At the eastern end of the tell (Area E), a large domestic EB non-elite quarter was intensively excavated (2004-2017).

Micro-debris were systematically recovered and analysed from the late Early Bronze III (Stratum E3a-c – c. 2600 BCE) to identify human activity patterns. The debris included pottery, animal bones, stone tools, jewelry, and other materials used daily that are often missed with traditional recovery techniques. These items were dropped, left or built up on the floor’s surface and can be used to reconstruct activity areas on floors. In this poster, we conduct a spatial analysis of the micro-debris using ArcGIS from one house through its successive phases (C-A/earliest to latest) of use to reconstruct the use of floors and spaces. The plans (Figs. 3-8) show results in the eastern half of the building, as evolves from an open courtyard into two rooms.

Heavy Fraction Method
During excavation, 10L samples across floors and accumulations above floors were collected from 1m by 1m squares.

Data
The data used for this analysis consists of 42 samples. These samples were hand sorted in the field laboratory and consist of over 20,000 individual specimens.

Spatial analysis data
The data represented here were collected and recorded in the field during the excavation season. Both point (x, y, z) and spatial (boundary) information was collected. These data were entered into ArcGIS and hot spot analysis was conducted on each of the material types to see patterns of material distribution on and accumulation above floor contexts. Hot spot analysis identifies statistically significant clusters of high values (hot spots) and low values (cold spots).

E5c Building 17E82D05
Area E had several phases of architectural remodeling during the Early Bronze Age (Greenfield et al. 2017). The last EB building phases correlate to the E5a, E5b, and E5c. Hardpack dirt floors were the most common floor matrix, though during the E5a, there was a stone paved floor in this building. Figures 3 and 4 represent where the sampling strategy for heavy fraction became more standardized and refined through the early years of excavation which yielded more samples from later stratified contexts.

Results
The small number of samples from the floors of the E5a (Fig. 3) phase (n=2) was too few to conduct statistical analyses on the heavy fraction data. Samples must be collected systematically across rooms where is no evident hot spots.

The hot spot analysis for the E5b (Fig. 4/Building 16E82D05) shows the distribution of samples as well as hot and cold spots. The 23 samples from the E5b phase appear to have a cluster of material along the southwestern wall. Here, hot spots for both sizes of flint, pottery, and shell appear. There is also a cluster of statistically low frequencies of >1mm along northern section of the partition wall. These samples were not taken systematically, possibly creating bias in the results.

The 42 samples from the E5c allow for statistical analysis (Figs. 5-8/Building 17E82D05). The hot spot analysis shows the distribution as well, hot, and insignificant samples for shell, bone, pottery, and flint. Each map represents the material collected from both sieve sizes (>5mm and >1mm), except flint as the >5mm flint had no statistically significant results.

Pottery, flint, and shell of all sizes have high value clusters in the western half of the building, perhaps representing a working area. In contrast, bone fragments >5mm are denser in the NW, while fragments >1mm are clustered in the SW part of the building.

Conclusion
Since few samples were collected from the E5a phase, it is difficult to infer activity areas or area usage from the heavy fraction alone. The larger sample collection from the E5b phase allows preliminary analysis showing hotspots along the SW wall of Building 16E82D05. These results are biased due to the heavier sampling near the walls with few samples taken in the interior of the building.

With the larger number of samples from the E5c phase, a number of hot spots based on different material types (bone, shell, pottery, and flint) can be identified. They indicate that the western half of the space was more intensively used since more material was found there. The greater fragmentation of bone in one part may indicate differential use of the space.

The hot spot analysis possibly signifies that the western half of the room was intensively used as a workspace in E5c even though there is no evident installations. In E5b, the large room was subdivided and used partly as a storage area and only the western room was intensively used as an activity area. The preliminary analysis conducted suggests that heavy fraction analysis can shed light especially in spaces where no evident installations are observed.