3D Geometric Morphometrics and Sheep/Goat Breeds in the Early Bronze Age of Tell es-Safi/Gath

Goal: To be able to determine if there are different sheep and/or goat breeds present at Tell es-Safi/Gath during the Early Bronze (EB) III (2850-2500 BCE) occupation in order to provide insights into the animal husbandry strategies at Tell es-Safi/Gath. Will use the ovicaprine remains from the EB occupation at Tell es-Safi/Gath, Israel.

Data: The site of Tell es-Safi, located in the Shephelah region in Israel, has yielded the remains of an EB neighbourhood with a rich assemblage of animal bones from several houses, courtyards, and an adjacent alleyway. This neighbourhood is thought to be a merchant’s quarter since it has evidence of extensive trade with the surrounding regions. Using ovicaprine astragalus recovered from these deposits, geometric morphometric comparisons were conducted to determine the composition and changes to sheep and goat breeds during this period.

Authors: Tina Greenfield, Jane Gaastra, Haskel J. Greenfield, Shira Elbaz, and Aren Maier

Methods: In order to identify the presence of different breeds of sheep (and goats) at Tell es-Safi/Gath, we chose to use 3D Geometric Morphometric (GMM) variation in the astragali. GMM is a more detailed and precise technique to identify differences in the size and shape of bone elements to identify intra-species variation (breed). It is a computer-assisted system that measures distances between discrete anatomical landmarks. Photogrammetric modelling is used to create an accurate 3D digital model of each astragalus. A series of 250-300 photographs are taken of each astragalus using fixed markers and a turntable to ensure accurate measurements (Fig. A). These are assembled in Agisoft PhotoScan to form a point cloud (Fig. B) which reproduces the location of each portion of the astragalus and its associated markers in three dimensions. Once the point cloud is built, a mesh is overlaid in Photoscan and the distance between the centre of each marker to its fellow markers is recorded (Fig. C). Landmarks are determined with the use of a statistical program “R” using the GMM package ‘geomorph’ (Fig. D). The landmark measurements are analysed in multivariate statistical programs to determine differences in size and shape between populations (e.g. Cucchi 2008; Duval et al. 2015; Evin et al. 2013). Measurements obtained from these landmarks are normalized to the same axis of orientation and gross size through a General Procrustes Analysis (GPA) and the shape-only geometry compared using Principal Components Analysis (PCA).

Results: Given the small sample size from Safi, the astragali morphometrics (totality of all landmark measurements) are compared against those of other assemblages to determine the presence of breeds at the site. The initial results suggest that sheep from Safi form a distinct population from those of Titri Höyük, and that there appear to be ‘outlier’ sheep present in the initial Safi sample, which may come from different populations to the main group of sheep present at the site. Goat populations do not appear to vary regionally, based upon these initial data. A much larger sample from Safi (currently under analysis) will eventually provide more detailed information about sheep and goat populations at the site.

Acknowledgements: Bar-Ilan University, Social Science and Humanities Research Council (Canada), University of Manitoba, Tell es-Safi/Gath Archaeological Research Project, St. Paul’s College, Host of colleagues and students.