INTRODUCTION
In this pilot study, we show how a simple and low cost ceramic analytical method permits clear and rapid identification of features indicative of shaping techniques. This mesoscopic approach facilitates a more complete understanding of the manufacturing sequence and the organisation of production. Manufacturing techniques, skills, and technical knowledge can be used to distinguish between pottery communities specialising in the manufacture of different wares and functional types (Ross 2017; Fowler 2011).

The preferred alignment of features in the fabric is an indicator of the shaping technique. The direction of pressure and degree of compression applied to plastic clay by the potter causes the minerals and voids to take up a preferred orientation. Different shaping techniques result in characteristic clay compression patterns as described in the literature (Figure 1; Rye 1981:58-84; Berg 2009). These compression patterns are typically viewed radiographically at the macroscopic level. Subsequent research has used high magnification analytical methods (SEM, petrography) to image the microstructures in thin-section to reveal similar compression patterns (Ross and Courty 1998:753-61). This study expand the existing identification criteria by developing an analytical method for distinguishing mesoscopic signatures of forming techniques which is congruent with conventional macroscopic and microscopic analytical methods.

In this study, a selection of Early Bronze Age III (EB III) cooking vessels and serving platters from Tell es-Safi/Gath are used to demonstrate its utility (Figures 2-3).

MATERIALS AND METHODS

For this analysis, we examined rim body and base sherds from ten holemouth jars (coarse ware) and nine platters (fine ware). Each base, body or rim sherd was thick sectioned using a 350×1000×1000 precision saw to expose cross-sections perpendicular to wall surfaces. High-resolution digital images of the thick sections (1600×2400 dpi) were created using an ordinary desktop printer scanner (Epson® WF 2540). Macrofacility® software was used to view, measure, and enhance features in the freshly cut thick sections. A scale was included with each scan, in order to facilitate measurements of features using the calibration tool and ruler function on Macrofacility®. This simple procedure enabled us to quickly profile the orientation, morphology, and distribution patterns of non-plastics and voids, as well as measure coil sizes, fissures, and wall regularity.

RESULTS

In this study, coils were identified when non-plastics showed orientations concordant with the folds and curved trajectories of a coil (A), which are not detectable on radiographs (Figures 4.1-4). The distribution patterns of non-plastics formed linear alignments and wavy undulations (B). Open spaces dominated by binder had edges bordered and encrusted by coarse non-plastics (C). Dense clusters of non-plastics were evenly spaced across the thick section (D). In these clusters, non-plastics have aggregated with divergent orientations and mark the presence of a coil join (E). Similar alignments were visible on the platters, but the patterning was less obvious due to the sparse inclusions (Figures 4.5). Voids from organic/fibre temper were sometimes frequent and large enough to infer a preferred orientation (F). These patterns are repeated at regular intervals.

Centrally placed voids equidistant apart in the middle of the fabric indicate the clay coils were not fully compressed when rolled out (G). The average coil size was 8.931 mm, with a standard deviation of 1.904. Hence, the overall variation is small and suggests the coiling technique was executed with a level of consistency to be expected of a skilled specialist.

Holemouth sections from the lower body (Figure 4.5) evidenced a different shaping technique. Voids were far more abundant and oriented parallel to the vessel walls, with linear and elongated shapes, and large dimensions. (H). Non-plastics tend to align in the same direction (I). These features contrast with the patterns identified on the body sherds and are consistent with the drawing technique.

The stretching forces from pulling and drawing up the clay leaves stress marks, long narrow voids, which indicate application of vertical pressure (Rye 1981:72-3).

CONCLUSION

The mesoscopic approach utilized in this study offers detailed information that could not be obtained through conventional radiography and microscopic approaches. It is also very rapid and more economic since it provides information at a lower cost than X-ray and preparation of thin-sections. Existing thin sections can be subjected to the same analysis of grain orientation as in this study, but are more costly and time-consuming to produce. This method was made effective on the coarse ware fabrics (holemouth) due to the abundance of large elongated angular crushed chalk in the fabric, which orientates well (Fig. 4.1-5). Trace signatures were less pronounced on the fine ware platters because non-plastics were less abundant, variable, and more unstated (Fig. 5.2-2).

The analysis revealed novel structural arrangements of features only visible in cross-section and not previously discussed in the literature on preferred orientation. This simple procedure provides a high level of detail, resolution, and full-coloured scaled images. Features and patterns in the images are less ambiguous compared to radiographs and involve far less preparation. The method proposed by this study is congruent with conventional macroscopic and microscopic approaches and expands the very little data from archaeological sources for the recognition of pottery forming techniques of the past (Martineau 2003:210).

REFERENCES CITED


FIGURES

Figure 1. Schematic diagram of the preferred orientation of inclusions and voids for the main primary forming techniques identified using x ray after Carr 1990:17. Rye 1981:58-84.

Figure 2. Reconstructed EB III holemouth cooking pot.

Figure 3. Reconstructed EB III platter.

Figure 4.1. Mesoscopic signatures of shaping techniques, as annotated on EB III holemouth thick sections. Fig. 4.1a—body sherds. Fig. 4.1b—a base.

Figure 5.1-2. Mesoscopic signatures of shaping techniques, as annotated on EB III platter thick sections.

1. Department of Anthropology and St. Paul’s College
Near Eastern and Biblical Archaeology Laboratory
The University of Manitoba
Winnipeg, MB R3T 2N2 Canada

2. Department of Anthropology
The University of Manitoba
Winnipeg, MB R3T 2N2 Canada

3. The Institute of Archaeology
The Hebrew (State) Department of Land of Israel
Studs and Artelogy
Bar-Ilan University
Ramat-Gan, 52900, ISRAEL

The Manufacture of Early Bronze Age III Holemouth Jars and Platters from Tell es-Safi/Gath, Israel: An Examination of Shaping Techniques at the Mesoscopic Scale

J. Ross1, H. Greenfield1, K. Fowler2, A. Maeir3

The University of Manitoba
Near Eastern and Biblical Archaeology Laboratory
The University of Manitoba
Winnipeg, MB R3T 2N2 Canada

The Martin (Szusz) Department of Land of Israel
Studies and Artelogy
Bar-Ilan University
Ramat-Gan, 52900, ISRAEL

The University of Manitoba
Near Eastern and Biblical Archaeology Laboratory
The University of Manitoba
Winnipeg, MB R3T 2N2 Canada

The Martin (Szusz) Department of Land of Israel
Studies and Artelogy
Bar-Ilan University
Ramat-Gan, 52900, ISRAEL