

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	
 	 	 	 	 	 	

	 	

 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	

COMP 4580 – Computer Security

Course Description

Calendar entry

Computer security and information management. This course will examine state-of-the-art	
knowledge about the issues relevant to data and computer security.	Prerequisites:	COMP	
3430	 and	 COMP	 3010.

General Course Description

The need for security permeates every aspect of Computer Science. Every	piece	of 	software	
must do its part to ensure the safety of the computer its running on and the privacy of the
people	using	it.	 In	this 	course	we	will	dive	into	security-first design	 as	 it pertains	 to	 the	
Operating	System; the development of applications across desktop, mobile, and web
platforms; and computer networks. Along the way we’ll learn	advanced 	techniques to
secure and test the systems we use every day.

A nefarious actor will find the weakest link to exploit and compromise a computer and all
the information found on it. This course will start you on your way to eliminating the
weakest links in the systems you build and maintain.

Detailed Prerequisites

Before 	entering	this course, a	student	should be able 	to:

• Understand what an operating system	 provides and how best to exploit that
functionality	 in	 the	 code	 they	 write.

• Implement software that makes use of core operating system	 functionality.
• Manipulate memory buffers through pointers and address arithmetic.
• Perform	 well-defined and structured	 tests	 on	 code.
• Use a debugger to inspect program	 state and step through code line-by-line.
• Build 	their 	own	client-server	 and	 peer-to-peer 	applications.
• Use messaging protocols such as HTTP.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• Make 	use 	of 	standard cryptographic tools including symmetric encryption, key-
exchange protocol, and secure random	 number generation.

• Exploit common Operating System	 vulnerabilities and show how to protect against
those 	exploits.

 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	

	

 	 	 	
 	 	 	

	 	
 	 	 	 	 	
 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	
 	

	
 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	

• Learn how to 	securely 	authenticate 	a	person/process and 	control	resource 	access
based 	on	that	 authentication.

• Apply secure programming techniques, such as defensive programming and input
sanitization, to the implementation of an	 application.

• Be introduced to common network-based attacks and 	how	to 	secure 	network	traffic.

Learning Outcomes

Security Fundamentals

Students 	should be able 	to:

1. Define the pillars of 	security: 	confidentiality,	integrity,	availability,	and 	authenticity.
2. Explain	the	different	threat models and 	how	they	 apply	to each	of	 hardware,	

software,	 communications, and 	data.
3. Differentiate	 between different types of malware.
4. Analyze the design of system	 with 	respect	to 	security.

Applied Cryptography

Students	should	be	able	to:

1. Use a symmetric cryptographic algorithm	 (e.g., AES) within a cryptosystem that	
makes use of a secure chaining mode (e.g. CBC).

2. Use a Message Authentication Code to verify	the	 sender of a message.
3. Generate	a 	public	key	and	 authenticate the key using a Certificate Authority.
4. Explain	how	digital	envelopes combine symmetric and public-key cryptosystems to

secure	 communications (e.g., web sessions).
5. Explain	 the 	difference 	between	 statistically	 random	 and 	cryptographically	secure

random	 numbers.
6. Use a cryptographically secure random	 number generator to create unique keys.

Operating System Security

Students 	should be able 	to:

1. Explain how an Operating System	 supports the sharing of	resources while 	also
limiting access based on a process’ permissions.

2. Explain and demonstrate how Operating System	 internals such as memory
management, file systems, and driver management can	be	exploited	to	bypass	
access 	controls.

3. Describe common OS techniques (e.g., ASLR, canaries, guards, sandboxing) and how
they protect an Operating System	 and the software making use of the OS.

4. Explain how build and distribution systems can be exploited to insert vulnerabilities
into	 software systems.

5. Describe	 how build and distribution systems can protect against exploitation.

	

 	 	 	 	 	
	

 	 	 	 	 	 	
	 	 	 	

 	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	

	

 	 	 	 	 	 	 	 	 	
 	 	 	

	 	 	 	 	 	
 	 	 	 	

	 	 	 	 	 	 			
 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	

 	
	 	

 	 	 	 	 	 	 	 	
	

 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 		

	 	 	 	 	

Access Control and Authentication

Students	should	be	able	to:

1. Describe	 how user- and 	data-oriented access 	control	prevent	unauthorized access to
a	resource.

2. Explain	how	 an access matrix, access control lists,	and	 capabilities access 	control	
mechanisms provide access control.

3. Describe	 the	 differences between	 authentication	based 	on	knowledge,	possession,	
or biometrics.

4. Explain	how	to	 securely manage, store, and authentic a user based on a user ID and
password.

5. Define	 two-factor	 authentication	 and	 design	 a system	 that securely uses 	2FA using
two of knowledge, possession, and biometrics.

6. Design and 	verify	 a remote authentication system using	 techniques such as OAuth,
OpenID,	and/or SRP.

Application Security

Students	should	be	able	to:

1. Apply defensive programming techniques to avoid common security pitfalls.
2. Rigorously	test	(e.g.,	through	integration	testing,	fuzzing)	 their 	own	code – and code,	

libraries, frameworks from	 other developers – for	 security	 vulnerabilities.
3. Implement input sanitization for	 a variety	 of	 input 	interpretation	situations;	

including, but not limited to, SQL 	and	 browser-based applications.
4. Implement secure web applications to 	protect	against	 attacks including,	but not

limited to, cross-site	 scripting.
5. Apply the rule of least privileges to the design and implementation of an application.
6. Make use of Operating System	 facilities to securely use	features 	such	as

environment variables, temporary files, and error	logging.

Network Security

Students	should	be	able	to:

1. Identify	the	security	 threats of	different 	network 	layers	and	design	techniques	to	
address them.

2. Describe	 a variety	 of Denial-of-Service attacks and how each prevents/impairs
authorized 	use 	of 	a	system.

3. Explain	how	to	 detect and 	then	respond 	to a	DoS	attack.
4. Explain	how	to	 preempt and/or prevent a DoS attack.
5. Design a firewall-based system	 that includes a	set	of 	rules for	 securing a	network.
6. Identify the security	 limitations of a firewall-based system.
7. Explain	how	Virtual	Private 	Networks 	provide 	authenticated and 	confidential	

communications over the public Internet.

 	 	 	 	 	 	 	 	8. Discuss the security implications inherent in wireless networking.

