

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	
	

	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	

	

	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	

 	 	
 	 	 	 	 	 	 	

COMP 4550 – Real-Time Systems

Course Description

Calendar entry

An introduction to the theory and practice of real-time systems. Topics include the design
of	real-time systems, scheduling, event based processing, and real-time control. This course
may not be held for credit if a student has previously completed both
of ECE 4240 and ECE 3760. Prerequisites:	COMP	 3430	 and	 COMP	 3370.

General Course Description

Computers are digital. The world is analog and 	obeys the laws 	of 	Physics.	 Within	a	
completely digital system	 the software developer is in full control of a simulation. As soon
as 	the 	software starts interacting with 	the 	real-world, the developer	 needs to consider the
analog	constraints 	of 	the system. That’s where real-time systems come in: applying	
algorithms and design techniques that guarantee the timing of analog interactions so we
can	 correctly	 sense and manipulate the real-world. From	 simple interactions like keyboard
and mouse input to communications to controlling the motion of a vehicle,	real-time
systems give	us	the	tools	we	need	to code	at 	the	interface	between	 analog	and 	digital	
worlds.

Detailed Prerequisites

Before 	entering	this course, a	student	should be able 	to:

• (3430)	 Identify	 the critical section(s) requiring mutually exclusive access in a piece
of	code	that 	will 	be	run	concurrently. Propose	solutions	 that avoid 	and/or 	prevent	
deadlock.

• (2280)	 Explain	how	device	driver 	code	interacts 	with	hardware	to	provide	I/O	
functionality.

• (2280)	 Identify inappropriate coding within an ISR and explain why system/device
driver implementations need to avoid such coding pitfalls.

• (3370)	 Use interrupts and memory mapped I/O to implement the transfer data
between a device and memory independent of	 the	 CPU.

• (2280)	 Use logical operations to mask a binary value’s individual bits to 0 or 1 and
compare bits between binary values.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• Write 	code that	 sense	 aspects 	of 	the 	real-world.
• Write 	code that manipulate aspects of the real-world.

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	

	

 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

		
 	 	 	 	 	

	

	

 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	
	

 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

• Design and implement applications that make real-time decisions	 based	 on	 current
goals	and	feedback.

• Determine the prioritization and scheduling of several real-time tasks concurrently	
executing	 within	and 	outside 	interrupt	service 	routines.

• Implement core kernel functionality needed	to	support	real-time tasks.

Learning Outcomes

Event Driven Input Processing

Students 	should be able 	to:

1. Select sampling frequencies based 	on	input	hardware	characteristics.
2. Implement hysteresis algorithms to filter unstable	digital	inputs (e.g.,	buttons).
3. Design and implement finite state machines that include time passed as an input for

state	 transitions.
4. Implement time-based input 	capture to 	extract	 measurements such as signal

frequency, time between bits, and RPM.
5. Implement analog input capture to extract measurements such as light intensity and

temperature.
6. Design and	 implement applications that determine actions/output	changes 	based on	

these 	input	sources.

Controlling External Devices

Students	should	be	able	to:

1. Explain	how	voltage	levels 	can	be	used control analog	outputs 	such 	as the 	RPM	of a	
motor and the strength of a magnet.

2. Implement pulse-width modulation (PWM) to 	vary 	the 	voltage 	level	applied to
analog	device.

3. Apply PWM to 	the 	generation	of signals	 such	 as	 a sine	 wave	 and	 a	 stream	 of bits on	a
network.

4. Compare and contrast open- versus	closed-loop control algorithms.
5. Implement a Proportional, Integral, Derivative (PID) algorithm	 to ensure correctly

timed control of an analog output based on command and feedback input changes.

Real-time Scheduling

Students	should	be	able	to:

1. Compare and contrast soft versus hard real-time deadlines.
2. Compare and contrast periodic versus aperiodic tasks.
3. Use a hardware timer to determine the exact amount of time that has passed

between	two 	events.

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
	

4. Use a hardware timer to implement a system	 heartbeat as the basis for determining
the 	next	 task to 	perform.

5. Analyze the interplay between interrupts to determine the priorities required to
ensure deadlines are met, critical sections are protected, and issues such as priority
inversion	 and 	deadlock	are 	prevented.

6. Perform	 rate monotonic and deadline monotonic analysis on a	set	of 	tasks to
determine if	a 	real-time schedule will meet all task deadlines.

7. Explain how dynamic algorithms such as Earliest Deadline First and Least Slack
Time schedule	 real-time tasks.

