

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

 	 	 	 	 	
 	 	 	 	 	 	 	 	

	
 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	 	

	
	

COMP 3430 – Operating Systems

Course Description

Calendar entry

Operating systems, their design, implementation, and usage. COMP 2160 is recommended
for Computer Engineering Students. May 	not	be 	held 	with 	ECE	3630.	 Prerequisites:	 [one	of	
STAT 1150, STAT 1000, STAT 1001, STAT 2220, or PHYS 2496]; and one of [[COMP 2280
and COMP 2080] or [(COMP 2140 or the former COMP 2061) and ECE 3610 and ECE
3790]].

General Course Description

This	course	 builds	 on	 the	 simple execution models used in	second	year	 through 	the
introduction	of the system	 software needed to manage multiple applications running on a
single computer at the same time.	

In	this 	course	 we 	focus on	 the 	application	of data structures and algorithms to the problem	
of	 managing all	the 	resources introduced	in	second	year:	 CPUs, I/O devices, and memory.
Clever management of resources also gives us the opportunity to introduce and make use
of new programming models that	allow	us 	to	write	 code	that works on multiple problems
at the time and 	code 	that	interacts 	with 	other running applications. In	fact,	we’ll	introduce	
the programming models as motivation for learning how an operating system	 does what it
does.

Detailed Prerequisites

Before 	entering	this 	course,	a	student	should be able 	to:

• Implement and manipulate data structures	 such	 as	 stacks,	 queues,	 and	 trees.
• Design, implement,	and	build complex applications requiring multiple modules with

well-defined	 interfaces.
• Perform	 well-defined	 and	 structured	 tests	 on	 code.
• Use a	variety	of 	standard development tools such as those that automate builds or

allow	 for	 the	 inspection	of active program	 state.
• Write code that directly manipulates memory through 	pointers and 	address

arithmetic.
• Show how a memory address is interpreted to access a word of memory given	a	

particular memory organization.
• Differentiate between user and system	 code and implement a basic interrupt service	

routine.

	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	

	

	

 	 	 	 	 	 	 	
 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	
	

 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	

Course Goals

By	the 	end 	of 	this course	students will:

• See why operating systems have grown in complexity to become one of the most
important pieces of software in the world today.

• Analyze the algorithm	 and data structure choices made to implement resource
management in the form	 of CPU scheduling, memory partitioning/virtualization,	
and the file system	 abstraction.

• Experience the design and implementation of an operating system	 as a case study in
the design, development, and evolution of a large and complex software
development project.

• Learn how to implement software that makes use of core operating system	
functionality	 through	 concurrent shared memory and message passing
programming models.

• Gain a deeper understanding of the separation between system	 and user code.
• Gain	a 	better	understanding of what an operating system	 provides and how best to

exploit 	that 	functionality	in	the	code	they	write.

Learning Outcomes

Processes and Threads

Students 	should be able 	to:

1. Compare and contrast processes, threads, and applications.
2. Describe	 the	 lifecycle	of	a	process.
3. Describe the lifecycle of the Unix operating system	 through the lens of processes.
4. Describe	 the operating system	 data structures	 (et 	al)	 needed to manage a	process

and those needed to manage a thread.
5. Write code that uses system	 calls to create and manage processes and threads.

Synchronization

Students	should	be	able	to:

1. Identify	 the 	critical	section(s) requiring mutually exclusive	access in	a 	piece	of	 code
that	will	 be run concurrently using threads 	or 	processes.

2. Identify	correct	and 	incorrect	 implementations that attempt to protect a critical
section.

3. Identify	 code protecting a	critical	section	that	 would result in deadlock and	 propose	
solutions	 that avoid	 and/or	 prevent said deadlock.

4. Write 	code 	that	uses 	pthread locks and condition variables to implement a
semaphore.

5. Protect a critical section using semaphores.

 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	
	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	

	

 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	 	
 	

	 	 	 	
 	
 	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	

	

 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

6. Use atomic hardware instructions to implement a lock.

Inter- process/thread Communication

Students 	should be able 	to:

1. Write 	code where threads communicate and coordinate activity through a	 shared	
memory buffer.

2. Write code where processes communicate through message passing via signals,	
pipes,	and 	FIFOs.

3. Describe	 how the operating system	 supports and implements shared memory,
signals,	pipes,	and	FIFOs.

4. Compare and contrast the shared memory and message passing programming
models and 	their 	relationship	 as 	seen	through 	the 	lens 	of 	synchronization.

CPU Scheduling

Students	should	be	able	to:

1. Compare and contrast preemptive and non-preemptive (cooperative) multitasking.
2. Compare and contrast different scheduling policies.
3. Evaluate the performance of scheduling policies.
4. Describe a scheduling algorithm	 used 	by a modern operating	system.
5. Write code that implements and 	analyzes a	scheduling	 policy.

Memory Management

Students	should	be	able	to:

1. Discuss the 	benefits 	of partitioning memory.
2. Explain the 	operating	system data structures and algorithms used to manage a

partitioning	strategy such	 as	 paging.
3. Explain	how	a	process’	entire	address 	space	can	be	 provided/supported via 	the	

concept of virtual memory.
4. Translate	virtual 	addresses	into	physical 	addresses.
5. Describe how the operating system	 works 	with 	the 	underlying hardware	to	 manage

paging and virtual memory.
6. Compare and contrast free space management policies.

File Systems

Students	should	be	able	to:

1. Describe	 the	 data structures	 used	 to	 represent files	 and	 directories	 as 	seen	in	Unix.
2. Show how common file operations are performed in terms of manipulating a	file

system’s data structures.
3. Explain how files are managed as part of a process’ active state.

 	 	 	 	 	 	 	 	 	
	 	 	

4. Compare and contrast traditional file systems with modern approaches	 such	 as log	
structured	 and	 journaling file systems.

