
COMP 3380 - Databases Concepts and Usage

Course Description

Calendar entry

An introduction to database systems including the relational, hierarchical, network and
entity-relationship models with emphasis on the relational model and SQL. Prerequisites:
COMP 2140 and [one of COMP 2150, COMP 2452, or ECE 3740].

General Course Description

Most applications require persistent data to be stored safely for long periods of time. These
data stores must be fast, resilient, and the data must be portable. We’ll discuss how to take
apart the objects in a dataset and transform it into a dataset without redundancies. Then,
we use tools such as Relational Algebra and SQL to put the dataset back together.

Relational Databases, or SQL databases as they are often called, have been the primary way
of storing data for many years, though alternative databases have gained popularity
recently. We will survey modern databases, such as graph databases, and document
databases; modelling data to be stored appropriately on these databases and running
queries on these databases. Storing and querying the same data in multiple different types
of databases demonstrates the usefulness, and drawbacks, of each database
implementation.

Detailed Prerequisites

Before entering this course, a student should be able to:

• Compute common set functions such as set intersection and set difference.
• Compare search algorithms in terms of efficiency.
• Create Object-Oriented data models based on a provided problem.
• Understand relationships between an object and the data and objects that it is

composed of.

Course Goals

By the end of this course students will:

• Model data using Entity-Relationship Diagrams and create databases based upon
these models.

• Create a database to store structured data with no duplication of data by applying
normal forms.

• Write and perform queries on data using SQL and be able to model the queries by
using Relational Algebra.

• Connect to a database using software to execute queries and modify the program’s
behaviour based upon the results of the query.

• Execute queries to add and extract data on graph and document databases.
• Contrast SQL databases with alternatives such as graph databases and document

databases.

Learning Outcomes

Data modelling

Students should be able to:

1. Determine and define functional dependencies (FDs) within a dataset and
understand how that will affect the resulting data models.

2. Model a data domain using Entity-Relationship modelling (ER Diagrams).
3. Model a domain that has inheritance relationships using Enhanced entity–

relationship modelling.
4. Use functional dependencies and Armstrong's Axioms to prove or disprove

statements about a dataset.
5. Create a model of data from a non-normalized dataset, recognizing functional

dependencies in the data from the data and context itself.

Creating relational databases from models

Students should be able to:

1. Create Relational Database model from an ER or EER diagram.
2. Apply normalization techniques (such as 1NF, 2NF, 3NF, BCNF) to a Relational

Model to reduce or eliminate redundancy in data.
3. Create a Relational Database using Data Definition Language (DDL) to create tables,

alter and remove existing tables.
4. Add constraints to a database to maintain consistency in the model, this includes

table and column constraints such as uniqueness and relationship constraints
between tables.

5. Add deletion techniques to Relational Database tables to allow deletion of records
that maintains the consistency of the database; Cascading deletion, setting to default
values, or refusing to delete.

Querying relational databases

Students should be able to:

1. Use SQL to query a Relational Database, joining relations in the table to form queries
to extract meaningful results.

2. Create queries with join clauses to join multiple tables into one resulting relation,
handling for cases where there may or may not be data to join with between the two
tables.

3. Use aggregation clauses to perform operations on the resulting set of data.
4. Modify data in relations with Data Manipulation Language (DML), using DML to add,

modify, and delete data.
5. Use transactions to ensure a multiple-insert operation is performed atomically.
6. Use a programming language to interact with a database; adding, removing,

updating, and finding data based on user interactions.
7. Use tools to show how a given query is interpreted and run by the database engine.
8. Use subqueries to extract data and create more complex queries. Recognize the

drawbacks, limitations, and performance impact of different types of subqueries.
9. Execute SQL injection attacks on insecurely created database queries and use tools

such as prepared statements to prevent SQL injection attacks.

Modelling and Querying with Alternative databases

Students should be able to:

1. Identify relationships between objects in a dataset and build a graph database from
those objects and relationships; create queries on this dataset to extract information
about how objects are related.

2. Build a data model using a document database (such as MongoDB) and query the
dataset.

3. Model a problem domain and load the model into a graph database (such as Neo4J);
run queries on the dataset to extract results that would be difficult to extract using a
Relational Database.

4. Explain the execution model of graph database queries and how this differs from
relational database execution models and how we can extract different results
because of these differences.

5. Compare and contrast a Relational Database with a Document or Graph Database.

	Course Description
	Calendar entry
	General Course Description
	Detailed Prerequisites
	Course Goals

	Learning Outcomes
	Data modelling
	Creating relational databases from models
	Querying relational databases
	Modelling and Querying with Alternative databases

