

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
			

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

COMP 3370 – Computer Organization

Course Description

Calendar entry

Principles of computer systems architecture, organization, and design. Performance,
instruction sets, processors, input/output, memory hierarchies. Prerequisite: COMP 2280
or	ECE	 3610.

General Course Description

This course builds on the memory and CPU organizations introduced in second year by
investigating advanced computer architectures that go beyond a simple Von Neumann
machine. Rather 	than	being able to design computer hardware, this course aims to make
students better software developers through a deeper understanding of how computer
organization affects code. Students can expect to use assembly language and/or C to
deepen	 their	 understanding	 of	 architectural design	 choices and the impact those choices
have	on	the	code	they	write.

In	this 	course	we	will	look	at	how	we	keep	the	CPU	actively	executing	instructions.	We	will	
look at techniques that try to maximize the amount of concurrent and parallel work on	a
computer can do within a CPU, across multiple levels of memory, and through independent
input/output operations. All of these techniques not only have a computer doing multiple
things at the same time, they all change how and when code	is	executed.	What 	you	expect a	
computer	to	do	with	code	you	write	is	 not what the computer will do with those
instructions.	How 	does	this	happen	in	a 	way	that 	guarantees	correct 	code	execution? How
does this change what is meant by good code? Welcome to COMP 3370.

Detailed Prerequisites

Before	entering	this	course,	a 	student 	should	be	able	to:

• Demonstrate how the code they write gets interpreted and executed by a computer.
• Convert high-level	code,	including	code representing data structures	 and 	recursive

operations, into assembly.
• Implement common assembly provided 	by	 a compiler: including	 the 	run-time stack,

parameter passing, local	variables,	and dynamic data structures.
• Explain how a simple set of circuits leads to the creation of Memory, the Central

Processing	Unit,	and	everything	in	between.
• Demonstrate how a state machine controls	the execution	of	instructions.

	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
 	

	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

 	

Course Goals

By	the 	end 	of 	this 	course 	students will:

• See how memory organization can both positively and negatively impact the
performance of their code.

• Gain	an	understanding of modern CPU design and how those design choices lead to
our ability to implement advanced operating systems and sophisticated	
applications.

• Be 	prepared to 	apply	a	greater 	understanding	of 	CPU/device 	interactions to 	the
implementation of device drivers.

Learning Outcomes

Performance

Students 	should be able 	to:

1. Calculate the performance of a computer in terms execution time.
2. Compare the performance of two computers running the same code.
3. Analyze attempts to improve computer performance using cycles	per	instruction	

relative to the number of instructions and CPU cycle time.

Memory

Students	should	be	able	to:

1. Compare cache memory implementation strategies and their effectiveness at
different levels of the memory hierarchy.

2. Analyze the effect of a caching strategy on a memory intensive algorithm.
3. Explain	the	architectural	designs needed	to	support	 the virtual memory algorithms

used by operating systems.	

I/O

Students 	should be able 	to:

1. Use	 timing diagrams to describe synchronous bus transfer operations.
2. Use interrupts and memory mapped I/O to implement the transfer of blocks of data

between a storage device and memory independent of the CPU.
3. Demonstrate the impact of	 multiple units accessing memory in parallel.

CPU Pipelining

Students	should	be	able	to:

1. Show	how	pipelining	 affects 	the 	execution	of 	a	sequence 	of 	instructions.

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	
	

2. Implement simple branch prediction algorithms and show how each algorithm	
works to minimize control hazards for a given piece	of 	code.	

3. Show how a given piece of code would have its instructions reordered to minimize
data hazards.

4. Explain the software and hardware design choices used to minimize structural
hazards.

