

 	

 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	

 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	

 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	
	

	 		
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	

 	 	 	 	 	 	 	
	

 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	

	
	

 	
		

COMP 3030 – Automata Theory and Formal Languages
Course Description
Calendar entry

An introduction to automata theory, grammars, formal languages and 	their 	applications.	
Topics: finite automata, regular expressions and their properties; context-free grammars,
pushdown automata and properties of context-free languages; Turing machines and their
properties. Prerequisite:	COMP	2080.

General Course Description

COMP	 3030	 introduces some of the central ideas of theoretical computer science. The
course covers	 some formal models of computation,	 including the finite automaton, the
pushdown automaton, and the Turing machine. For each model, students first learn	how	to
design machines, and then learn	to prove	 facts	 about which problems can and cannot be
solved within the model. Some relationships	 between these	 formal models and practical	
applications such	 as	 lexical	analysis,	text	editing,	 machine design, syntax analysis, parser
generation are 	also 	covered.

Detailed Prerequisites
The primary prerequisite for this course is reasonable mathematical background. Students
should feel comfortable with abstract	 mathematics and proofs. Specific	topics	that	are	
useful	include	a	knowledge	of 	logic,	sets,	 and 	functions,	as	well	as	basic	data	structures	and	
algorithms.

Before 	entering	this 	course, a	student	should be able 	to:
• Describe	 a set using set-builder notation, and be familiar with basic set operations	

(e.g., union, intersection, complement).	Prove relationships	 between two 	given	 sets,	
e.g.,	subset,	disjointedness,	equality.

• Use	and	understand	function	notation, e.g., specifying the domain, co-domain, and
range.	Describe	and	prove	whether or not	a	function	is	injective	and/or 	surjective.	

• Use	and	understand	propositional 	and	predicate	logic.
• Prove mathematical propositions using various techniques: direct proof,	 indirect

proof,	proof 	by	contradiction,	proof by cases, proof by mathematical induction.
• Write 	pseudocode to 	precisely 	describe 	an algorithm.	 Prove	that an algorithm	

correctly	solves	the	intended	task.

Course Goals
By	the 	end 	of 	this 	course 	students 	will:

 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	
 	

	

		
 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	
	

 	 	 	 	 	 	 	
	 	 	

 	

		
 	 	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	

• Define	 and	 use	 several formal models of computation: finite automata, pushdown
automata, Turing machines.

• For each formal model of computation studied, define machines to solve a given
problem. Prove that the machine correctly solves the problem.

• For each formal model of computation studied,	 describe	 the	 set of problems that	can
and cannot be solved in the model.

• Use	various	techniques	to	prove	 impossibility, i.e., that	a	 given	 problem	 cannot be
solved	 by any machine within a particular formal model.	

• Describe operations on formal languages, and prove closure facts about these
operations.	Use	closure	facts	to	prove	whether	or	not a 	language	belongs	to	a 	certain	
class.

• Understand the difference between determinism	 and non-determinism, and how it
might affect computational power.

• Explain the historical context of computability in the study of mathematics, and how
Alan Turing’s work contributed to the development of the modern computers	 we	
use	today.

• Relate formal models of computation to real-world systems and 	applications (e.g.,	
state machines, compilers, pattern matching, software development tools).

Learning Outcomes
Terminology
Students	should	be	able	to:

1. Use notation	and	 terminology related	 to strings (e.g.,	alphabet,	prefix,	suffix,	
substring) and string	 operations (e.g.,	concatenation,	reverse).

2. Understand the concept of “formal language” and understand related	 operations on	
languages (e.g.,	union,	intersection,	concatenation,	 complement, product,	 Kleene	
star).

3. Use notation and terminology related to functions (e.g.,	input 	types,	output 	types,	
decision problems, computability,	encodings,	reductions).

Finite Automata and Regular Expressions
Students 	should be able 	to:

1. Model	 a	 simple real-world system	 as an	abstract state machine by defining	 the	
system	 inputs, the states	 of	 the	 system, and 	the 	transitions 	between	 states.

2. Formally define a finite automaton by providing mathematical definitions of the
state	 set,	 the 	input	alphabet,	the 	transition function, the	 start state, and	 the	
accepting	states. Draw an equivalent machine diagram	 representation.

3. Simulate the execution of a finite automaton on a given input string to determine the
outcome.

4. Compare and contrast determinism	 vs. non-determinism in	the	context 	of	finite	
automata (i.e., DFA’s and NFA’s).

5. Explain the relationship between finite automata and regular expressions.

 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		

 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	

 	 	 	 	 	 	 	 	
	

 	 	

		

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 		

		

 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	

6. Given a regular expression and a string, determine if the pattern matches the string.

Regular Languages
Students	should	be	able	to:

1. Given	a 	regular	language,	 design a corresponding finite automaton or regular
expression.

2. Write a formal proof using state invariants that a specific finite automaton correctly	
decides	a 	given	regular	language.

3. Given a finite automaton or regular expression, identify its corresponding regular
language.

4. Use	the	Myhill-Nerode Theorem	 to determine the size of the smallest possible
deterministic finite automaton (DFA) that	decides 	a	given	regular	language. (Time-
permitting: Describe an algorithm	 that shrinks a	given	DFA to its smallest possible
size.)

5. Use	various	techniques	to	prove	that 	a	given	language	is	not 	regular,	 e.g.,	Pigeonhole	
Principle,	Myhill-Nerode Theorem, the Pumping Lemma.

6. For	 a given operation on languages, prove whether 	or 	not the 	set	of 	all	regular
languages 	is 	closed 	under 	the 	operation.

7. Use	 known	 closure	facts	to	prove	whether	or	not a	given	language 	is 	regular.

Context-Free Grammars
Students	should	be	able 	to:

1. For a given grammar and string, write out a derivation of the string and 	draw	the
corresponding	parse	tree.

2. Understand the concept of ambiguity, and prove whether or not a given grammar is
ambiguous.

3. Define	 normal forms (e.g., Chomsky, Greibach)	and identify if a given grammar is in
a particular normal form.

4. Describe an algorithm	 that converts any given grammar into Chomsky Normal
Form.

5. Describe the CYK algorithm	 that decides whether a	 given	 grammar in Chomsky
Normal Form generates a	given	string.

Pushdown Automata
Students	should	be	able	to:

1. Formally define a pushdown automaton by providing mathematical definitions of
the 	state 	set,	the 	input	alphabet,	the 	stack	alphabet,	the 	transition	function,	the 	start	
state,	 and	 the accepting states. Draw an equivalent machine diagram	 representation.

2. Simulate the execution of a pushdown automaton on a given input string to
determine the outcome.

3. Compare and contrast determinism	 vs. non-determinism	 in the context of
pushdown automata (i.e.,	 DPDA’s and PDA’s)

4. Explain the relationship between pushdown automata and context-free grammars.

		

 	 	 	 	
	

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

	
 	

		

 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	

		

 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	
	 	

 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	

Context-free Languages
Students	should	be	able	to:

1. Given	a 	context-free	 language,	 design	 a corresponding	 context-free grammar or
pushdown	 automaton.

2. Given	a 	context-free grammar or pushdown automaton, identify its corresponding
context-free	 language.

3. Use the Pumping Lemma to prove that a given language is not context-free.
4. For	 a given operation on languages, prove whether 	or 	not	the 	set	of 	all	context-free	

languages 	is 	closed 	under 	the 	operation.
5. Use	known	closure	facts	to	prove	whether	or	not 	a	given	language	is	context-free.

Turing Machines
Students	should	be	able	to:

1. Formally define a Turing machine by providing mathematical definitions	 of	 the	 state	
set,	 the	 input alphabet, the tape 	alphabet, the 	transition	function,	the 	start	state,	 the
accept	state,	and 	the 	reject	state. Draw an equivalent machine diagram	
representation.

2. Simulate the execution of a Turing machine on a given input string to determine the
outcome.

3. Draw a Turing machine diagram that	decides a given language, or computes a given
function.

4. Given a Turing machine diagram, identify the language it decides or the function it
computes.

5. Discuss Turing machine	variants	and	their equivalence to each other. Compare and
contrast determinism	 vs. non-determinism	 in the context of Turing machines.

6. (Time-permitting) Define complexity classes related to running time or memory
requirements of Turing machines.

Computability
Students	should	be	able	to:

1. Describe and use terminology relating to Turing-decidability	 and	 Turing-
recognizability.

2. Understand universality and be able to describe/implement the 	encoding	process 	of
a specific object (e.g., a Turing machine). Describe how a 	Universal 	Turing	Machine
can simulate the execution of any other Turing machine.

3. Use	Cantor’s	 diagonal argument to	prove the 	existence 	of 	non-computable functions
and problems.

4. Give specific examples of undecidable	 problem (e.g.,	 The	Halting Problem),	and	use a	
reduction to	 prove	 that a	given problem is undecidable.

5. Explain Rice’s Theorem	 and its proof. For	 a given undecidable	 problem,	argue	
whether or not Rice’s Theorem	 can be applied.

6. Give specific examples of unrecognizable problems and use	 a	reduction to 	prove
that	 a	given problem is unrecognizable.

 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	
	
	

 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

		

 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	
	 	 	 	 	 	 	 	 	 	

	 	

7. Design an	 algorithm	 to prove that a	given	 problem is	decidable	 (or	recognizable).
Use	the	dovetailing	technique	to	prove	that 	a	given	 problem is	recognizable.

8. For	 a given operation on languages, prove whether 	or 	not	the 	set	of 	all	decidable
languages 	is 	closed 	under 	the 	operation,	and	 prove whether 	or 	not	the 	set	of all	
recognizable	 languages	 is	 closed	 under	 the	 operation.

9. Use	known	closure	facts	to	prove	whether	 or	 not a given language	 is	 decidable	 (or	
recognizable).

10. (Time-permitting) Describe the Post Correspondence Problem	 and use it in
reductions	 to	 prove	 the undecidability of various problems involving context-free	
languages (e.g., detecting ambiguity)

11. (Time-permitting) Describe the Busy Beaver Game,	 its	 related	 non-computable
functions, and its application to solving open problems in mathematics.

Applications of Automata Theory and Formal Languages
Students	should	be	able	to:

1. Explain the use	of finite	 automata	and 	regular 	expressions in text	searching	tasks,	
and in the tokenizing step of the code compilation process.

2. Explain the use of pushdown automata and context-free grammars in the parsing
step of the code compilation process.

3. Explain the 	Church-Turing	Thesis	(and	its	historical 	context),	and	 how it 	relates	the	
study of computability to software development (for example,	 the impossibility of
fully-automated testing/debugging,	or 	Turing-completeness).

