

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

 	 	 	 	 	 	 	
 	

COMP 3010 – Distributed Computing

Course Description

Calendar entry

An introduction to the development of client server and peer-to-peer systems through web
applications, distributed programming models, and distributed algorithms. Prerequisite:	
[[COMP 2150 and COMP 2080] or [ECE 3740 and ECE 3790]] and [one of STAT 1150, STAT
1000, STAT 1001, STAT 2220, or PHYS 2496].

General Course Description

Applications don’t run in isolation on a single computer. In this course we go from	 the
isolated	applications	 written in	second	year (and most of third year) and focus	 on	 how an	
application	can	interact	with	other applications to solve interesting problems. We’ll discuss
how 	to	design	 applications 	such 	that	they	 can interact 	reliably. We’ll	also 	discuss 	how	to
implement the common client-server	 applications we 	use 	every day.

Distributed computing	doesn’t	get	interesting	until	we	have	a	group	of	peers	working	to	
solve a common problem. To do that we need to understand and be able to implement
several really interesting/complex algorithms. Doing that well is a challenge. A	 challenge
involving	concurrency	and 	failures — where 	a	failure 	in	code 	you	didn’t	write has to be
something that your code handles cleanly.	 It may be a challenge but solving those
challenges	is	 at the foundation of some interesting Computer Science.

Detailed Prerequisites

Before 	entering	this 	course,	a	student	should be able 	to:

• Implement and manipulate data structures such as lists, queues, and trees.
• Design, implement, and build complex applications requiring multiple modules with

well-defined	 interfaces.
• Perform	 well-defined	 and	 structured	 tests	 on	 code.
• Use a variety of standard development tools such as those that automate builds or

allow for the inspection of active program	 state.
• Use standard tools to remotely connect to a computer and then edit/run code.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• See	how	 real-world distributed applications are designed and implemented.
• Build 	their 	own	client-server	 and	 peer-to-peer 	applications.

 	 	 	 	 	
 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	

 	 	 	 	
 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	

	

 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	
	 	 	 	 	

 	 	

	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	
	

 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	
	 	 	 	 	

• Experience messaging protocols such	 as HTTP.
• Design and implement a messaging protocol that must correctly	interact 	with	code	

written	by 	other 	students.
• See	how	 real-world peer-to-peer 	applications that share and 	store information are

built using fundamental algorithms that ensure the 	scalability 	and reliability	 needed	
by 	applications 	that	involve an unknown number of peers from	 around the world.

Learning Outcomes

Design of Distributed Applications

Students 	should be able 	to:

1. Explain	how	 a	 distributed	 resource	 is	 located	 using	 a distributed naming service.
2. Identify	 potential failure modes in	 a	distributed 	design	and 	propose 	solutions to

mitigate each failure mode.
3. Analyze the scalability of a distributed design and propose improvements that	

enhance	the	scalability	of	the	design.
4. Propose	and	justify	the	design	of	a	distributed	application.

Web-based Computing

Students	should	be	able	to:

1. Write server-side	 code that processes HTTP messages without the 	use 	of 	an	existing	
library or framework.

2. Implement server-side	 session management without the 	use 	of 	an	existing	library,
framework, or database management system.

3. Write client-side	 code	 that	provides 	sufficient	testing	 of	their	own	server-side	 code.

Distributed Programming

Students 	should be able 	to:

1. Write 	code 	that	uses stream	 sockets to implement a client-server	 application.
2. Write code that uses datagram	 sockets to implement some peer-to-peer application.
3. Explain how the message passing model provides synchronization primitives (e.g.,	

blocking	versus 	non-blocking) needed	by	 concurrently	running	applications	that
interact.

4. Identify	 synchronization	 issues (e.g.,	deadlock,	live-lock,	and 	race 	conditions) that	
arise 	in	a	piece 	of 	code 	that	 interacts with other instances of the same code.

5. Write 	error 	handling	and 	recovery 	code that mitigates failure modes identified	
through timeouts and corrupt messages.

	

 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	
 	

	
 	 	 	 	 	 	 	

	 	 	 	
	

Distributed Algorithms

Students	should	be	able	to:

1. Show that a given algorithm	 correctly or incorrectly	 provides	 mutually exclusive
access/update 	of 	a	shared 	resource by 	a	group	of 	peers.

2. Show that a given algorithm	 correctly or incorrectly reaches	 consensus	 among a
group	of	peers.

3. Show that a given algorithm	 correctly or incorrectly elects a	new	tracker/server
from	 a group of peers.

4. Show that a given algorithm	 correctly or incorrectly manages a ring of peers that	
join	and	leave	the	ring	non-deterministically.

5. Explain	how	a	group	of 	peers 	can	 manage a shared data store.
6. Discuss	 the	 happens-before 	relation	 and 	its 	use to 	define 	a	partial	ordering	of 	events

between	a	group	of 	interacting	peers.
7. Use	the	happens-before 	relation	to 	identify whether a given algorithm	 will result in

message passing race	 conditions, live-lock, and/or 	deadlock	and 	propose 	a	solution	
that	prevents/avoids 	the 	situation.

