

	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	
	 	 	
	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	
 		
 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	

	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

COMP 2160 - Programming Practices

Course Description

Calendar entry

Introduction	to	issues involved 	in	real-world computing. Topics will include memory
management, debugging, compilation, performance, and good programming practices.	
Prerequisite:	COMP	1020	(C+)	or	COMP	1021	(C+). Pre- or	corequisite:	COMP	2140.

General Course Description

By	this 	point	you	know	 how to code (pick one or more of Python, Processing, Java), but you
probably	don’t	know	how	to	 code well.

In	this 	course we’re going to be looking at tools and methods that you can use to improve
your	 coding skills,	 regardless of	the	language	that 	you’re	writing	in. We’re 	going	to be 	using	
C	 and	 Unix. This	is	 not a	C/Unix course.	It 	is	a	course	focusing	on	good	programming
practices 	that form	 the foundation you	 need to become a successful software	 developer.

Detailed Prerequisites

Before 	entering	this 	course,	a	student	should be able 	to:

• Write code that makes use of instantiation, objects in memory,	 and classes.
• Write 	code 	that	deals 	with 	large 	sets 	of 	data	using	files 	stored 	on	 disk.
• Design and implement iterative and 	recursive algorithms.
• Design and implement algorithms using arrays and 	basic	linked 	lists.
• Implement simple searching and sorting algorithms.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• Write code using an unfamiliar programming language idiomatically.
• Write 	code that makes identifying	and	fixing	 problems easier.
• Verify	 and	 validate	 that code meets a set of well-defined	 expectations.
• Modularize code via well-defined	 functional units.
• Describe how memory is used and safely	 managed within code they write.
• Identify	 systemic performance issues and provide mitigating	solutions.

	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	
 	 	

	 	 	 	

	

 	
 	 	
 	 	 	 	 	 	
 	 	 	 	
 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	

	

Learning Outcomes

Design by Contract

Students 	should be able 	to:

1. Define	 the	 interface to an Abstract Data Type (ADT).
2. Define the implementation of an ADT using a private data structure.
3. Define	 the	 pre- and 	post-conditions	 for	 a routine.
4. Define	 the 	invariants that	 encapsulate the valid states of an ADT.
5. Use	preconditions,	postconditions,	and	invariants	to	 validate	the	 run-time behaviour

of an ADT being	 used 	in	 an	application.

Testing

Students 	should be able 	to:

1. Explain	the	purpose	of 	testing	code.
2. List classifications	of	test	data	(general,	edge,	leaks).
3. Create	 general case	 test data (inputs, expected	 outputs)	 for	 an ADT.
4. Create	 edge	 case test	data	(inputs,	expected 	outputs) 	for an ADT.
5. Manually 	test	 an ADT with 	test	data.
6. Explain the purpose of automated testing.
7. Implement a test harness that automates	 the testing	of an ADT.

Programming Practices

Students	should	be	able	to:	

1. Recognize	 potentially	risky programming techniques and how they differ in
different high-level	languages.

2. Write “safe” code in a programming language that makes it difficult to write safe
code.

3. Apply “good” programming techniques to produce readable and modifiable code	in	
a	 programming language that makes it 	easy	to	write	unreadable	code.

4. Divide code from	 a complex project into higher-level modules, for separate
development and compilation.

5. Describe	 the	 benefits	 of	 modularity and use	 simple metrics to specify the degree of
modular independence,	such	as	coupling	and	cohesion.

6. Given	 an	existing	solution, identify	and	 explain	 where the use	of appropriate data
structures, algorithms, and/or techniques (such	 as	 caching	 and	 lookup tables)
provide better paths to optimization than low-level	code.

Memory and Pointers

Students	should	be	able	to:

 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	
	 	

 	 	 	 	 	

	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

1. Write, test, and debug programs in a high-level	language 	that	exposes low-level	
details of data types and memory addresses.

2. Describe	 concepts	 of	 in-application memory management such as first-fit memory
allocation,	 the 	run-time stack and the heap, and garbage collection.

3. Implement a simple systems-level	 solution	 to one	of	the	 in-application	 memory
management techniques.

4. Use function pointers to parameterize	 behaviours.

Tools

Students	should	be	able	to:

1. Build and execute programs from	 a command-line environment.
2. Write code that	 takes 	advantage 	of its environment through a) simple command-

line 	options to define	 run-time behaviour, and b) the redirecting of	 standard	 input
and output for	 file	 I/O.

3. Use an automated build tool, such	 as make along	with a	pre-defined	 Makefile,	 to
build a complex project.

4. Define the build of their own project by modifying an	existing	 Makefile.
5. Use	a	 source-level	debugger, such	 as lldb, to inspect program	 state and step

through 	code 	line-by-line to determine the causes of errors in a program.

