

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	

 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 		
 	 	 	 	 	 	 	 	 	

	

	 	

 	

COMP 2140 – Data Structures and Algorithms

Course Description

Calendar entry

Introduction to the representation and manipulation of data structures. Topics will include
lists,	stacks,	queues,	trees,	and 	graphs.	May 	not	be 	held 	with 	COMP 2061.	 Prerequisites:	
COMP	 1020 or	 COMP	 1021.

General Course Description

Data structures form	 the backbone of every interesting application that’s ever been built
and that will ever be built. Being able to implement and analyze data structures is the first
step to being able to implement and analyze real-world 	applications.

This	course	 focuses	 on implementing common abstract data types (ADTs) using
fundamental data structures. The data structures include arrays, linked lists, binary search
trees,	binary 	heaps, hash tables, adjacency lists, and adjacency matrices. The ADTs
implemented include stacks, queues, priority queues, dictionaries, and graphs. For each
ADT, multiple implementations are studied, as are algorithms to support each of the ADT’s
operations,	 and the corresponding running times and space requirements are analyzed.

Additional topics include merge sort and quicksort, their running time analysis, as well as
lower 	bounds 	on	the 	worst-case time for comparison-based 	sorting; 	a	selection	of 	concepts
in	 programming relevant to ADTs; and discussions of recursive algorithms, which are used
extensively.

Detailed Prerequisites

Before 	entering	this course, a	student	should be able 	to:

• Design and implement iterative and 	recursive algorithms.
• Design and	 implement algorithms using arrays.
• Implement basic 	quadratic-time sorting algorithms.
• Write code that makes use of instantiation,	classes,	 and referencing objects in	

memory.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• Specify	an	abstract	data	type	and its 	corresponding	interface.	

 	 	 	 	
	 	 	

	 	 	
 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	

	

	

 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 		

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	
	

	

 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	
 	 	 	

	
 	 	 	 	

	
	

	

• Implement the common abstract	data	types: stack,	 queue,	 priority	queue,	dictionary,	
and 	graph,	along	with 	their 	associated 	operations, using	various (appropriately
selected) data structures.

• Implement common data structures	 and their associated 	operations,	including	a	
doubly	 linked	 list,	 a binary	 search	 tree,	 a binary	 heap,	 and	 a hash	 table.	

• Implement merge sort and quicksort algorithms.
• Analyze the running times and space requirements of every data

structure/algorithm	 implemented.	

Learning Outcomes

Stacks and Queues

Students 	should be able 	to:

1. Implement constant-time push	and 	pop	 stack operations by writing	 appropriate
code for an	array data structure.	

2. Implement constant-time push and pop stack operations by writing appropriate
code	 for	 a	linked 	list data structure.

3. Implement constant-time enqueue and dequeue queue operations by writing
appropriate 	code 	for 	an	array	data	structure.	

4. Implement constant-time enqueue and dequeue queue operations	by	writing	
appropriate 	code 	for 	a	linked 	list	data	structure.

Binary Search Trees

Students	should be able 	to:

1. Identify	 the components of a	binary	tree: 	root,	leaf 	node,	internal	node,	left	child,	
right child, left subtree, right subtree, parent node, sibling node, descendant nodes,
ancestor 	nodes.	

2. Identify	properties of 	binary	trees: 	height,	depth	of 	a	node.
3. Implement a	binary	 search	 tree data structure.
4. Write code that determines whether a tree is height balanced.
5. Write code that determines whether 	a	binary 	tree 	is 	a	binary 	search 	tree.	
6. Write recursive	 code	 that traverses	 a binary	 tree:	 pre-order,	in-order,	and	post-

order	traversals.	
7. Implement linear-time (i.e., no	tree	rebalancing) insert,	delete,	search,	and	

predecessor dictionary	 operations	 by 	writing	appropriate	code	for 	a	binary	search	
tree 	data	structure.

Heaps

Students 	should be able 	to:

 	 	 	 	 	
 	 	 	 	 	 		
 	 	 	

	 	 	 	 	 	 	
 	 	

	

 	 	 	 	 	 	 	 	
	

 	 		
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	
	 		

 	
	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	
	

	

 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	

	 	

1. Implement an	array-based binary 	tree data structure.	
2. Write code that determines whether 	a	binary 	tree 	is 	a heap.
3. Implement logarithmic-time insert 	and	extract priority	queue	 operations	by	writing	

appropriate code for an array-based data structure.	
4. Write code	that 	reorders	an	array	into	a	heap-ordered	binary	tree	 in-place.

Sorting Algorithms

Students	should	be	able	to:

1. Write code that implements quicksort and merge sort, recursively,	for 	the	array	data	
structure.	

2. Explain	the	strategy	of 	divide-and-conquer algorithms.
3. Analyze the worst-case	 runtimes of merge sort and	 quicksort.
4. Explain why 	the 	worst-case time of quicksort differs from	 its expected-case time.
5. Write code that implements heapsort using	a 	heap data structure.
6. Implement a	 counting sort and analyze its running time.

Hash Tables

Students	should	be	able	to:

1. Design simple hash functions using modular arithmetic (the division method) or the
multiplication method.

2. Implement search,	 insert,	 and	 delete	 dictionary	 operations	by	writing	appropriate	
code	for	 an	array-based hash	table	 with open	addressing	to	resolve	collisions.

3. Implement search, insert, and delete dictionary operations by writing appropriate
code	for	 an	array-based hash	table	with	chaining	to	resolve	collisions.	

4. Analyze	the space	 and worst-case	 time costs for	 the 	search,	insert,	and 	delete
operations	on	a 	hash	table.

Graphs

Students	should	be	able	to:

1. Identify	 the components of a	graph: 	vertex,	edge,	degree,	directed 	graph,	undirected
graph.

2. Write code to implement an adjacency list and an adjacency matrix.
3. Analyze the space requirements of an adjacency list and an adjacency matrix as a

function of the number of vertices and the number of edges in the graph.	
4. Implement depth-first and	 breadth-first graph search	 operations	 by	 writing	

appropriate code	 that	uses stacks	 and	 queues.	

	

 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	
	

 	 	
	 	 	 	 	 	

	

Introduction to Balanced Search Trees

Students	should	be	able	to:

1. Compare and contrast a	binary	search 	tree (having linear-time operations)	 with a	
balanced search	 tree, either a	B-tree 	or 	2-3	 tree.

2. Express lower and 	upper 	bounds 	on	the 	height	of a	balanced search	 tree,	 either a	B-
tree 	or 	2-3	 tree,	 as a function of the number of keys stored in the tree.

3. Describe the split and merge operations on a	balanced search	 tree,	 either a	B-tree 	or
2-3	 tree.

4. Implement search	 and	 insert dictionary	 operations	 by	 writing	 appropriate	 code	 for	
a	balanced search tree, either a B-tree 	or 	2-3	 tree.	

