

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	

 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 		
 	 	 	 	 	 	 	

	

	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	

COMP 2140 – Data Structures: Analysis and Implementation

Course Description

Calendar entry

Introduction to the representation, implementation, and analysis of common data
structures:	 stacks,	 queues,	 hash	 tables, binary and balanced trees. Algorithms for
manipulating data structures will be analyzed using asymptotic notation. Prerequisites:	
COMP	 1020 or	 COMP	 1021.

General Course Description

Data structures form	 the backbone of every interesting application that’s ever been built
and that will ever be built. Being able to implement and analyze data structures is the first
step to being able to implement and analyze real-world 	applications.

This	course	 focuses	 the 	analysis 	and implementation	of common abstract data types
(ADTs) using fundamental data structures. The data structures include binary search trees,
binary 	heaps,	 balanced search	 trees,	 and hash tables. The ADTs implemented include
stacks, queues, priority queues, dictionaries, and graphs. For each ADT, multiple
implementations are studied, as are algorithms to support each of the ADT’s operations,
and the corresponding running times and space requirements are analyzed.

Detailed Prerequisites

Before 	entering	this 	course,	a	student	should be able 	to:

• Design and implement iterative and 	recursive algorithms.
• Design and implement algorithms using arrays.
• Implement basic 	quadratic-time sorting algorithms.
• Write code that makes use of instantiation,	classes,	 and 	referencing	 objects in	

memory.

Course Goals

By	the 	end 	of 	this 	course 	students 	will:

• Express 	the	 worst-case	 cost of iterative algorithms as a function of input size.
• Formally show whether a	 function f is Big Oh, Theta, Omega, little oh, or little omega

of	 a	 function	 g.
• Specify	an	abstract	data	type	and	its	corresponding	interface.	

 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	

	

	

	 	

	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	
 	

	

 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

 	
	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

 	 	 	 	 	 	 	 	
	 		

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	

• Implement the common abstract data types: stack, queue, priority queue, dictionary,	
and 	graph,	along	with 	their 	associated 	operations,	using	various 	(appropriately	
selected)	 data structures.

• Implement common data structures and their associated operations, including a
binary 	search 	tree,	a	binary 	heap,	and 	a	hash 	table.	

• Analyze the running times and space requirements of every data
structure/algorithm	 implemented.

Learning Outcomes

Abstract Data Types and Interfaces

Students	should	be	able	to:

1. Explain	the	difference	between	what	types of 	data	are	stored and 	how	they	are	
stored	 (which	 data structure),	 and	 the	 difference	 between	 what operations	 are	
supported and how they are implemented (which algorithm).

2. Design an abstract data type for a given problem.
3. Write 	code 	for 	an	interface 	that	corresponds to 	a	given	abstract	data	type.	

Algorithm Analysis

Students	should	be	able	to:

1. Compare the relative worst-case costs	(e.g.,	 worst-case running times) of two
algorithms using more than a simple comparison of execution times on sample
input.	

2. Express the	 worst-case cost of a simple iterative algorithm	 as a function of its input
size (under simplified assumptions for a unit of computation time, without formally
defining a model of computation).

3. Explain	the	difference	between	best-case,	worst-case, and 	average-case	costs	for	a	
deterministic algorithm.

4. Explain the relative asymptotic rates of growth of common functions: constant,
logarithmic, linear, quadratic, cubic, exponential, etc.

5. Explain	why	the	largest-order term	 is responsible for the asymptotic growth, not
constants	nor	lower-order terms.

6. Simplify an expression using asymptotic notation to identify the largest-order term.
7. Formally define Big Oh, Theta, Omega, little oh, and little omega notation.
8. For two polynomial or logarithmic functions f and g, formally show whether

function f is Big Oh, Theta, Omega, little oh, or little omega of function g.
9. Appropriately use limits to show asymptotic relationships between two functions.

Stacks and Queues

Students 	should be able 	to:

 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 		

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	
	

	

 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	 		
 	 	 	

	
 	 	 	 	

	
	

	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	

 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	
	

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	

1. Implement constant-time push	and 	pop	 stack operations by writing	 appropriate
code for an	array data structure.	

2. Implement constant-time push and pop stack operations by writing appropriate
code	 for	 a	linked 	list data structure.

3. Implement constant-time enqueue and dequeue queue operations by writing
appropriate 	code 	for 	an	array	data	structure.	

4. Implement constant-time enqueue and dequeue queue operations	by	writing	
appropriate 	code 	for 	a	linked 	list	data	structure.

Binary Search Trees

Students	should	be	able	to:

1. Identify	 the components of a	binary	tree: 	root,	leaf 	node,	internal	node,	left	child,	
right child, left subtree, right subtree, parent node, sibling node, descendant nodes,
ancestor 	nodes.	

2. Identify	properties of 	binary	trees: 	height,	depth	of 	a	node.
3. Implement a binary search	 tree 	data	structure.
4. Write code that determines whether a tree is height balanced.
5. Write code that determines whether a binary tree is a binary search tree.
6. Write recursive	 code	 that traverses	 a binary	 tree:	 pre-order,	in-order,	and	post-

order	traversals.	
7. Implement linear-time (i.e., no	tree	rebalancing) insert,	delete,	search,	and	

predecessor dictionary	 operations	 by 	writing	appropriate	code	for 	a	binary	search	
tree 	data	structure.

Balanced Search Trees

Students should	 be	 able	 to:

1. Compare and contrast a binary search tree (having linear-time operations) with a
balanced 	search 	tree.

2. Understand	the	differences	between	weight-balanced 	trees and 	height-balanced
trees. Express the balancing factor of a tree and determine whether a given tree is
balanced 	or 	unbalanced.	

3. Derive an upper bound on the height of a balanced tree as a function of the number
of	nodes.

4. Explain	tree	rotations,	when	a	double	rotation	is 	necessary,	the	cost	of 	a	rotation,	
and 	which 	rotations 	are 	necessary	after 	insertion	and 	deletion	into 	a balanced
search	 tree.	

5. Analyze the worst-case	cost 	of	insertion	and	deletion	in	a balanced 	search tree.
6. Implement search and insert dictionary operations by writing appropriate code for

a	balanced 	search 	tree.

	

 	 	 	 	 	
 	 	 	 	 	 		
 	 	 	

	 	 	 	 	 	 	
 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	
	 		

 	
	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	
	

	

 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 		
 	 	 	

	

	

Heaps

Students 	should be able 	to:

1. Implement an	array-based binary 	tree data structure.	
2. Write code that determines whether 	a	binary 	tree 	is 	a heap.
3. Implement logarithmic-time insert 	and	extract priority	queue	 operations	by	writing	

appropriate code for an array-based data structure.	
4. Write code	that 	reorders	an	array	into	a	heap-ordered	binary	tree	 in-place.

Hash Tables

Students	should	be	able	to:

1. Design simple hash functions using modular arithmetic (the division method) or the
multiplication method.

2. Implement search,	 insert,	 and	 delete	 dictionary	 operations	by	writing	appropriate	
code	for	 an	array-based hash	table	 with open	addressing	to	resolve	collisions.

3. Implement search, insert, and delete dictionary operations by writing appropriate
code	for	 an	array-based hash	table	with	chaining	to	resolve	collisions.	

4. Analyze	the space	 and worst-case	 time costs for	 the 	search,	insert,	and 	delete
operations	on	a 	hash	table.

Graphs

Students	should	be	able	to:

1. Identify	 the components of a	graph: 	vertex,	edge,	degree,	directed 	graph,	undirected
graph.

2. Write code to implement an adjacency list and an adjacency matrix.
3. Analyze the space requirements of an adjacency list and an adjacency matrix as a

function of the number of vertices and the number of edges in the graph.	
4. Implement depth-first and	 breadth-first search	 operations	 by	 writing	 appropriate	

code	 that	uses stacks	 and	 queues.	

