

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	

	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	

	 	
	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	

COMP 2080 – Algorithms: Design and Implementation

Course Description

Calendar entry

Techniques for algorithm	 design: divide-and-conquer, greedy, dynamic programming, and
randomization. Analysis of recursive algorithms through recurrence relations. The	 design
and implementation of common algorithms such as sorting and selection. STAT 1000 or
STAT 1001 or STAT 1150 is a recommended prerequisite.

Prerequisites: COMP 2140 and [one of MATH 1240, MATH 1241, or the former COMP
2130].

General Course Description

This course introduces common algorithmic techniques used 	in	the design of algorithms
that solve a variety of problems, as well as techniques for analyzing the efficiency of
algorithms in terms of their costs, such as running time and memory usage.

Students can expect to implement sorting and selection algorithms, as well as algorithms
that make use of a variety of techniques such as divide-and-conquer, greedy, dynamic
programming, and randomization.

The material covered here provides the foundation upon which Computer Science depends.
Regardless	of	the	third- or	fourth-year course, the design and analysis of algorithms is a	
part of	everything	we	do.

Detailed Prerequisites

Before 	entering	this 	course,	a	student	should be able 	to:

• Design and implement iterative and 	recursive algorithms.
• Design and implement standard	 algorithms that manipulate arrays, linked lists, and

binary 	trees.
• Implement abstract	data	types such	 as	 stacks,	 queues,	 balanced 	search 	trees,	

dictionaries,	 and	 priority	 queues using	 data structures	 such	 as	 arrays,	linked 	lists,	
and/or 	binary	trees.

• Express 	the	 worst-case	 cost of iterative algorithms as a function of input size.
• Apply common techniques in discrete mathematics, including	logical 	equivalence,	

logical implication, quantifiers, evaluating finite summations, proofs, mathematical
induction,	introductory	set 	theory, basic counting of permutations and
combinations, introductory	graph	theory.

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	

	

 	 	 	 	 	 	 	 		
 	 	 	 	

		
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	

	
 	 	 	 	 	 	 	 	

	

 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Course Goals

By	the 	end 	of 	this 	course 	students 	will:

• Express 	the	 worst-case	 cost of a recursive algorithm	 using a recurrence relation.
• Solve certain types of recurrence relations, simplify the solution using asymptotic

notation,	and	prove	correctness	using	a	proof	by	induction.	
• Apply divide-and-conquer, greedy, randomized, and dynamic programming

algorithmic	design	techniques.
• Analyze the worst-case running time of typical divide-and-conquer,	greedy,	

randomized, and dynamic programming algorithms.
• Prove whether common properties of greedy algorithms and dynamic programming

hold.
• Implement common sorting	 and	 selection	 algorithms.

Learning Outcomes

Recurrence Relations

Students	should	be	able	to:

1. Express the	 worst-case cost of a recursive algorithm	 using a recurrence relation.
2. Differentiate	 between the	 recursive	 expression for	 a recurrence	 relation and	 its	

closed-form	 expression.
3. Solve certain types of recurrence relations using the substitution method.
4. Simplify a recurrence relation’s closed-form	 solution using asymptotic notation.
5. Prove	the	correctness	of	a	recurrence	relation’s	closed-form	 expression using a

proof 	by	induction.
6. Apply the Master Theorem	 to solve a recurrence relation.

Divide-and-Conquer Algorithms

Students 	should be able 	to:

1. Explain	the	structure	of 	divide-and-conquer algorithms.
2. Apply divide-and-conquer as a technique in algorithm	 design.
3. Analyze the worst-case	 running time of typical divide-and-conquer algorithms using

recurrence	 relations.

Sorting Algorithms

Students	should	be	able	to:

1. Write code that implements quicksort and merge sort, recursively, for the array data
structure.	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	
	 		

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	

	

	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		
 	 	 	 	 		
 	 	 	 	 	 	 	 	 	 	 	

		

	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	

		
 	 	 	 	

2. Explain	the	strategy	of 	divide-and-conquer algorithms in merge sort and quicksort.
3. Explain the strategy of randomization in quicksort.
4. Analyze the worst-case runtimes of merge sort and quicksort.
5. Explain	why	the	worst-case time of quicksort differs from	 its expected-case time.
6. Write code that implements heapsort using a heap data structure.
7. Implement a counting sort and analyze its running time.

Greedy Algorithms

Students	should	be	able	to:

8. Explain the structure of greedy algorithms, including greedy choice and growing a
solution incrementally.

9. Apply greedy choice as a technique in algorithm	 design.
10. Analyze the worst-case running time of typical greedy algorithms.
11. Prove whether the two properties of greedy algorithms hold: the optimal

substructure	 property	 and	 the	 greedy-choice	property.

Dynamic Programming Algorithms

Students	should	be	able	to:

1. Explain the structure of dynamic programming algorithms.
2. Apply dynamic programming as a technique in algorithm	 design.
3. Analyze the worst-case running time of typical dynamic programming algorithms.
4. Prove whether the two properties of dynamic programming algorithms hold: the

optimal substructure property and the overlapping subproblems property.
5. Differentiate between memoization and tabulation.
6. Implement a dynamic programming algorithm	 that computes both the size of a

solution	 and	 returns	 the	 solution.	

Randomized Algorithms

Students	should	be	able	to:

1. Explain the structure of randomized algorithms.
2. Explain the differences between Las Vegas and Monte Carlo randomized algorithms.
3. Apply randomization as a technique in algorithm	 design.
4. Analyze the expected running time of typical randomized algorithms.
5. Differentiate between expected running time and worst-case time.
6. Analyze the probability that a randomized algorithm	 returns a correct solution.

Selection
Students	should	be	able	to:

1. Implement the quickSelect algorithm.

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 		

		

 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	 			

		

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 		

2. Analyze the expected-time and worst-case time for quickSelect.
3. Explain	the	O(n)	worst-case time selection algorithm	 (median of medians algorithm)

and 	analyze 	its 	worst-case time.

Skip Lists

Students	should	be	able	to:

1. Implement a skip list, including the operations search, insert, delete and
predecessor.	

2. Explain how node heights are assigned at random	 according to a geometric
distribution.

3. Analyze the expected space and time costs of skip lists and each operation.

Algorithm Correctness

Students	should	be	able	to:

1. Define	 preconditions	 and postconditions for simple code.
2. Define loop invariants and loop measures for simple iterative code.
3. Prove	partial correctness, termination, and full correctness for simple code.

