

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

 	 	 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	
 	 	 	 	 	
 	 	 	 	

COMP 1500 – Computing: Ideas and Innovation

Course Description

Calendar entry

An introduction to the topics of Computer Science and problem	 solving. Students will learn
concepts in computer programming. May not be used to fulfill computer science
requirements in a Computer Science Honours, Joint Honours, Major, General or Minor
program. May not be taken once in a declared Computer Science Honours, Joint Honours,
Major, General or Minor program. May be used as an elective if taken prior to entry.

General Course Description

You may not know anything about computers, and that’s totally OK.	This 	course 	will	start	
by giving you a general overview of some of the fundamental concepts of Computer
Science, starting from	 the bottom	 (binary, and hardware), working up to abstractions and
problem	 solving (algorithms and data structures), and finally, application of fundamental
concepts to a domain area (artificial intelligence, bioinformatics, etc.).	You’ll 	also	get a
chance to do some basic programming in this course using a visual programming
environment called Snap!

Detailed Prerequisites

Before entering	this	course,	a 	student 	should	be	able	to:

• Evaluate arithmetic expressions, applying the rules of order of operation to basic
arithmetic operators (+, −, ×, ÷) and parentheses.

• Use a web browser and have basic document editing skills (e.g., word processing,
slide	 creation).

Course Goals

By	the 	end 	of 	this 	course 	students 	will:

• Have	 a better	 idea of	 the	 breadth	 of	 Computer Science (it’s not just programming!).
• Represent information digitally.
• Build simple circuits for calculating values	and show how those	 circuits	 can	 be	

combined to perform	 more complicated calculations.
• Apply basic problem-solving	 skills.
• Write,	 use, and evaluate simple algorithms.
• Implement abstractions as software.

	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	
 	
 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	
 	

Learning Outcomes

Computer Science

Students	should	be	able	to:

1. Explain	what	 Computer Science is in a written assignment by giving examples of
subdisciplines in Computer Science.

2. Define the term	 abstraction.
3. Explain why abstractions are necessary to solve complex problems with computers.
4. Describe	 how a Turing machine behaves.
5. Define and describe the von Neumann architecture.

Representing information digitally

Students	should	be	able	to:

1. Convert numbers between number systems (binary, decimal, hexadecimal).
2. Compute how many bits are required to store certain numbers.
3. Explain how text is stored digitally (ASCII vs. Unicode).
4. Explain how images are stored digitally (black and white • grayscale	 • colour).
5. Predict how an animation might be stored digitally.
6. Explain how formats and encodings are important for communication.

How computers function

Students	should	be	able	to:

1. Evaluate Boolean expressions with logical operators AND, OR, NOT, and XOR.
2. Construct a Boolean expression that satisfies	 a truth	 table.
3. Explain how XOR and AND can be used to add two single-bit numbers.
4. Translate	Boolean	expressions	into	circuits	and	vice	versa.
5. Build 	a	full-adder 	circuit	up	to 	four 	bits.
6. Determine the output of a circuit given a circuit diagram.
7. Describe the structure of a simple CPU architecture (Arithmetic Logic Unit, Control

Unit, memory hierarchy, memory addressing)

Basic assembly language programming

Students	should	be	able	to:

1. Use a simple assembly language to write programs that can do the following.
a. Perform	 multi-step arithmetic calculations.
b. Receive	inputs	and	 produce	an	output.

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	

	

 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	

c. Test a condition and make a decision based on the result.
d. Repeat a sequence of steps until some condition is met.

2. Determine the output of a simple assembly language program.

Problem solving, algorithms, and complexity

Students	should	be	 able 	to:

1. Explain what an algorithm	 is.
2. Divide a big problem	 (e.g., “How do I sort these?”) into smaller steps.
3. Find information in a list using linear search and binary search.
4. Sort information using bubble sort and selection sort.
5. Rank	searching	and	sorting algorithms by runtime complexity (Big O notation).

Implement abstractions as software

Students should be able to use a visual programming language to:

1. Move 	a	sprite 	around 	on	a	screen.
2. Repeat blocks using loops (forever, n times, event-based 	conditions).
3. Detect events	 using conditional blocks	 and	 Boolean expressions.
4. Store and modify values in variables (numbers).
5. Use random	 numbers in a program.
6. Make custom	 blocks for code reuse.
7. Use input to customize the behaviour of a program.

Disciplines within Computer Science

Students taking this course should be able to accomplish certain tasks within a discipline of
Computer Science,	based	on	the	preference	of	the	instructor.	 The following are examples
that have been taught in this course. They are not meant to be	prescriptive	or	required.

Bioinformatics

Students	should	be	able	to:

1. Define common terms used in microbiology to describe life sciences data (DNA, base
pairs, codons, genes, genomes, sequencing).

2. Explain the purpose of assembly algorithms.
3. Compare and contrast reference-based assembly to de novo assembly.
4. Explain	how	sequencing	reads 	can	be	represented 	in	a	graph.
5. Define the term	 de Bruijn graph.
6. Build a de Bruijn graph from	 a set of sequencing reads.
7. Reconstruct a genome from	 a de Bruijn graph.
8. Justify the need for sequence alignment.

 	 	 	 	 	 	

	

 	 	 	
 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

9. Align sequences using the Needleman-Wunsch algorithm.

Cryptography

Students	should	be	able	to:

1. Define the term	 cryptography.
2. Justify	 the	 need	 for	 cryptography.
3. Define the terms “plaintext”, “cipher”, “ciphertext”,	“encryption”,	and 	“decryption”.
4. Use a shared key cipher (e.g., Caesar Cipher) to encrypt and decrypt a message.
5. Use frequency analysis to decrypt a simple ciphertext without a key.
6. Use brute force to decrypt a simple ciphertext without a key.
7. Define the term	 “public key cryptography”.
8. Explain the significance of prime numbers and the factoring problem	 to RSA	

encryption.
9. Find the prime factors of a (small!) composite number and use	the	result	to	decrypt	

a message that was encrypted with RSA.

