

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	

	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	

COMP 1012 - Computer Programming for Scientists and
Engineers

Course Description

Calendar entry

(Lab Required) An introduction to computer programming suitable for solving problems in
science and engineering. Students will implement algorithms for numerical processing,
statistical analysis and matrix operations.	May	not	be	held	with	 COMP	 1010, COMP	 1011	 or	
COMP	 1013. One of any 40S Mathematics (50%), MATH 1018, or MSKL 0100. Pre- or	
corequisite: One of MATH 1230, MATH 1500, MATH 1510, or MATH 1501.

General Course Description

This course is an introduction to implementing simple algorithms by writing computer
programs. The course does not require previous programming experience. However, many
students find that if they have never written any computer programs or	have	never	 been
formally introduced to algorithms before,	the 	pace 	can	be 	challenging.	If 	you	would like to
learn more about the subject of Computer Science, while also picking up important
programming fundamentals, you may want to consider taking COMP 1500 before this
course.

In	this 	course	students 	will	learn	to	define	and 	use	variables,	functions,	conditional	
expressions, iteration via loops, read data from	 files stored on a computer, and create
simple data structures such as arrays, lists, sets, and dictionaries. Recursion	and	an	
introduction	to	object-oriented programming are also discussed. Examples and problem	
sets	 will be	 drawn from	 all	the 	Sciences (from	 Physics to Statistics and everything in-
between) including	those	of	particular	interest 	to	 Engineers.

Detailed Prerequisites

Before 	entering	this 	course, a	student	should be able 	to:

• Evaluate arithmetic expressions, applying the rules of order of operation	to	basic	
arithmetic operators (+, −, ×, ÷) and 	parentheses.

• Use	 common mathematical functions such as absolute value, square	 root,	power
functions,	 and trigonometric functions (e.g.,	 to calculate	angles).

• Given a formula for the terms of a sequence, calculate the sum	 of n terms.
• Calculate simple statistics on a dataset (e.g. mean, median, standard deviation).
• Download,	 install, and use new unfamiliar software	 on	 a desktop or	 laptop

computer.

	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 		
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	

 	
 	 	 	 	

	

Course Goals

By the 	end 	of 	this 	course 	students will:

• Have a robust mental model for how the computer executes programming
instructions, and makes execution flow decisions, by accessing information from	
memory, performing calculations, and storing results in memory.

• Write and run moderately complex programs using a procedural programming
language.

• Devise solutions to simple problems and implement them	 as computer programs.
• Read and evaluate written programs.
• Describe basic programming concepts and structures in plain English.
• Represent ideas and information in a way that computers can understand and act

on.
• Implement and 	use data structures to solve a problem, with emphasis on arrays,

lists,	sets,	and 	dictionaries.
• Write software that reads and processes data from	 files stored on disk.

Learning Outcomes

The Mechanics of Programming

Students	should	be	able	to:

1. Write and 	edit	code in a text editor or simple IDE.
2. Run their programs, providing interactive	input 	and	 producing	 output.
3. Explain the role	 of	 an	interpreter 	in	 executing	a 	program.
4. Find	 and	 correct errors	 that prevent a program	 from	 running.
5. Determine the source of run-time errors using simple debugging techniques such as

“trace” output statements.
6. Describe the step-by-step execution	of a simple program without	the 	use 	of a	

computer.
7. Import libraries/modules and use functions and constants defined therein.
8. Apply programming standards, such as naming conventions,	 commenting, and code	

formatting, to produce human-readable and modifiable programs.

Data and Representation

Students	should	be	able	to:

1. Identify	the	data	types of 	literal	values.
2. Declare,	initialize, and assign variables	of	 primitive (integer,	floating	point,	boolean),	

string,	 sequence	 (lists,	 tuples,	 arrays)	 and	 collection	(sets,	 dictionaries)	types.

 	 	 	 	 	 	 	 	 	 	 	
	

 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 	
 	 	 	
 	

	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	

 	 	 	

	

 	 	 	 	 	
 	 	 	

	
 	 	 	 	 	
 	

	

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	 		

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	

	

3. Apply operators and parentheses to build expressions using variables and literal
values.

4. Determine the	 order	of	operations	and	the	type	of	the	result 	of	an	expression.
5. Explain the 	consequences of numbers having limited precision when	being	

represented in binary by a computer.
6. Describe the 	scope 	of 	variables and 	the 	uses 	of 	variables 	of 	different	scope.
7. Identify	the	difference	between	references and 	objects.

Mathematical Operations

Students	should	be	able	to:

1. Write and evaluate arithmetic expressions (+, −, ×, ÷, mod) that include both literal
values	and	 variables.

2. Apply the modulo operator in common operations such as even/odd or “clock”
math.

3. Use	the	 compound assignment operators	(e.g., +=) to simplify common assignment
statements.

4. Use	language	libraries	for	evaluating	 common math functions.

Boolean Operations

Students	should	be	able	to:

1. Use	 relational operators	 on primitive types to 	produce 	Boolean	results.
2. Write and 	evaluate	 Boolean expressions	with	 relational (e.g., >,	 <,	 >=)	 and/or	 logical	

operators	(e.g.,	 and,	 or,	 not).
3. Recognize	the	correspondence	between	 Boolean conditions and Boolean variables.
4. Explain	the	order of 	operations 	used 	in	evaluating	conditional	expressions.

Conditional Statements (if-else)

Students	should	be	able	to:

1. Write 	code 	that	uses if	and	if-else	constructions for decision making.
2. Write 	code 	that	uses nested if statements and if-else-if chains for making more

complex decisions.

String Processing

Students	should	be	able	to:

1. Declare and use string variables in a program.
2. Access characters in a string	 by	 index and	 build	 strings	 character-by-character	or	by	

slicing.

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	
 	
 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
	

 	 	 	 	
 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	

 	 	 	 	 	
 	 	 	 	 	 	 	
 	
 	

	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	

3. Perform	 simple operations on strings such as concatenation, and find and replace.
4. Convert between numeric and string types.
5. Compare strings for equality.
6. Apply formatting to strings and numbers to produce human-readable	 output.

Input

Students	should	be	able	to:

1. Explain why all input comes into the system	 as a string.
2. Obtain text input from	 a user.
3. Read	the	contents	of	a	file.
4. Build 	an	appropriate 	data	structure to 	represent	data	in	a	file.
5. Load data from	 a file into a data structure using split,	strip,	and 	cast	 operations.

Loops

Students	should	be	able	to:

1. Write code	that 	uses	 deterministic for loops, and non-deterministic loops with
while.

2. Select	the appropriate type 	of 	loop	to 	use for	 a	given	context.
3. Write code	that 	uses	 nested	loops,	and	other 	nested	control	structures.
4. Use a loop to access all or a subset of elements in a data sequence.
5. Use a loop to read data from	 file.

Methods or Functions

Students	should	be	able	to:

1. Subdivide complex problems into subroutines.
2. Implement subroutines with parameters and return values.
3. Explain	how	the	use	of 	functions 	affects 	variable	scope.
4. Explain	the	difference	between	passing	as value	and 	passing	as 	reference.

Random Numbers

Students should	 be	 able	 to:

1. Explain why pseudorandom	 numbers are used in programming languages.
2. Use pseudorandom	 numbers to create a reproducible experiment.

Data Sequences and Collections

Students	should	be	able	to:

 	
	

 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	
 	
 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	

1. Explain	the	difference	between	a	sequence	(e.g. list,	tuple) and 	a	collection	(e.g.	set,	
dictionary).

2. Insert	data	into	lists,	tuples,	sets,	and 	dictionaries.
3. Access individual items or iterate over all items in a list, tuple, set, or dictionary.
4. Draw how collections of data are stored in memory.
5. Analyze a data set, and choose the most appropriate data structure to store the data.

Arrays

Students	should	be	able	to:

1. Determine when an array is an appropriate solution to a problem.
2. Explain	the	difference	between	a	list	and 	an	array.
3. Declare	 and	 iterate	through one-dimensional and multi-dimensional arrays 	of

primitive types.
4. Perform	 a computation on, or	 apply a	conditional	 to, all elements of an array.
5. Calculate basic statistics (sum, mean, median, standard deviation) for data stored	 in	

an	array.
6. Pass arrays to and return arrays from	 subroutines.
7. Describe how arrays are passed to subroutines as variable parameters.

Object-Oriented Programming Basics

Students	should	be	able	to:

1. Write a simple class that includes constructors, instance variables, and	 instance	
methods.

2. Use	instances	of	user-defined	 classes	 in	 other	 user-defined	 classes	 and	 within	 the	
main program.

3. Understand object references and use them	 appropriately in code, including use of a
reference	 to	 the	 current object.

4. Analyze a problem	 statement or dataset and create an object or objects to represent
the 	data.

Recursion

Students	should	be	able	to:

1. Create and implement recursive solutions to simple problems such as simple
mathematical calculations and list traversals.

2. Write 	a	recursive solution to a problem	 with a helper function.
3. Identify and explain the base case and recursive step components of a recursive

algorithm.
4. Explain	the	flow	of 	control	during	recursive	function	calls,	including	the	role	of the	

runtime stack.

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	

	

Algorithms

Students 	should be able 	to:

1. Implement simple algorithms in a high-level programming language.
2. Devise	 algorithms to solve simple problems, such as array comparison or	finding	a

minimum	 value.
3. Describe and implement linear search and ordered	insert algorithms.

