

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	
	

	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 		
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

COMP 1010 - Introduction to Computer Science 1

Course Description

Calendar entry

(Lab Required) An introduction to computer programming using a procedural high-level
language.	May 	not	be 	held 	with 	COMP 	1011 	or 	COMP 	1012 	or 	COMP 	1013.	Prerequisite:
One of any 40S Mathematics (50%), MATH 1018,	or MSKL 	0100.

General Course Description

This course is an introduction to implementing simple algorithms by writing computer
programs. The course does not require previous programming experience. However, many
students find that if they have never written any computer programs or	have	never	been	
formally introduced to algorithms before,	the 	pace 	can	be 	challenging.	If 	you	would like to
learn more about the subject of Computer Science, while also picking up important
programming fundamentals, you may want to consider taking COMP 1500 before this
course.

Detailed Prerequisites

Before 	entering	this 	course, a	student	should be able 	to:

• Evaluate arithmetic expressions, applying the rules of order of operation to basic
arithmetic operators (+, −, ×, ÷) and 	parentheses.

• Use	 common mathematical functions such as absolute value, square	 root,	power
functions,	 and trigonometric functions (e.g.,	 to calculate	angles).

• Download,	 install, and use new unfamiliar software	 on	 a desktop or	 laptop
computer.

Course Goals

By	the 	end 	of 	this 	course 	students will:

• Have a robust mental model for how the computer executes programming
instructions, and makes execution flow decisions, by accessing information from	
memory, performing calculations, and storing results in memory.

• Write and run moderately complex programs using a procedural programming
language.

• Devise	 solutions	 to simple problems and implement them	 as computer programs.
• Read and evaluate written programs.
• Describe basic programming concepts and structures in plain English.

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	

 	
 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	
 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	
 	 	 	

	

	

• Represent ideas and information in a way that computers can understand and act
on.

• Analyze and implement simple common algorithms for	 tasks	 such	 as	 searching.

Learning Outcomes

The Mechanics of Programming

Students	should	be	able	to:

1. Write and edit code in a text editor or simple IDE.
2. Compile and run their programs, providing interactive	input 	and	 producing	 output.
3. Explain the conceptual differences between	 human-readable	 source	 code	 and	 object

code/executables and the 	role of the compiler in translating from	 the former into
the 	latter.

4. Find and correct errors that occur at compile time.
5. Determine the source of run-time errors using simple debugging techniques such as

“trace” output statements.
6. Describe the step-by-step execution	of a simple program without	the 	use 	of a	

computer.
7. Apply programming standards, such as naming, commenting, and named constants,

to produce human-readable and modifiable programs.

Data and Representation

Students	should	be	able	to:

1. Identify	the	data	types of 	literal	values.
2. Declare,	initialize,	and	 assign variables 	of primitive, string, and simple collection

(array)	types.
3. Apply operators and parentheses to build expressions using variables and literal

values.
4. Determine the order	of	operations	and	the	type	of	the	result 	of	an	expression.
5. Use	casting	to	change	the type 	of 	a	value.
6. Explain the 	consequences of numbers having limited ranges or	precision when	

being represented in binary by a computer.
7. Describe the 	scope 	of 	variables and 	the 	uses 	of 	variables 	of 	different	scope.
8. Identify	the	difference	between	references and 	objects for	 built-in	types such	 as

Strings	and	arrays.

Mathematical Operations

Students	should	be	able	to:

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	
	 	

 	 	 	

	

 	 	 	 	 	
 	 	
 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	
 	 	 	 	 	 	
 	 	 	 	

	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	 		

	 	

 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	

1. Write and evaluate arithmetic expressions (+, −, ×, ÷, mod) that include both literal
values	and	variables.

2. Apply the modulo operator in common operations such as even/odd or “clock”
math.

3. Use	the	 compound assignment operators	(like	+=	or	 --) to simplify common
assignment statements.

4. Use	language	libraries	for	evaluating	 common math functions.

Boolean Operations

Students	should	be	able	to:

1. Use	 relational operators	 on primitive types to 	produce 	Boolean	results.
2. Evaluate	 Boolean expressions	with	logical 	operators	(e.g.,	 and,	 or,	 not).
3. Recognize	the	correspondence	between	 Boolean conditions and Boolean variables.

String Processing

Students	should	be	able	to:

1. Declare and use string variables in a program.
2. Access characters in a string	by	 index 	and build 	strings 	character-by-character.
3. Perform	 operations on individual characters such as case conversion.
4. Perform	 simple operations	on	strings	such	as	concatenation.
5. Convert between numeric and string types.
6. Compare strings for equality.

Conditional Statements (if-else)

Students	should	be	able	to:

1. Write 	code 	that	uses if	and	if-else constructions for decision making.
2. Write 	code 	that	uses nested if statements and if-else-if chains for making more

complex decisions.

Loops

Students	should	be able 	to:

1. Write code	that 	uses	 deterministic for loops, and non-deterministic loops with
while.

2. Convert between the two types of loops, while recognizing which is more
appropriate for	 a given	 context.

3. Write code	that 	uses	 nested	loops,	and	other nested	control	structures.

	

 	 	 	 	 	
 	 	 	 	 	 	 	
 	

	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	
 	 	
 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	

	

Methods or Functions

Students	should	be	able	to:

1. Subdivide complex problems into subroutines.
2. Implement subroutines with parameters and return values.
3. Identify	the	scope	of 	local	variables.

Arrays

Students	should	be	able	to:

1. Determine when an array is an appropriate solution to a problem.
2. Declare	 and	 use	 one-dimensional arrays of primitive and string types.
3. Implement parallel arrays to store compound data types.
4. Implement partially	filled arrays 	for 	data	sets 	of 	an	unpredictable 	size.
5. Pass arrays to and return arrays from	 subroutines.
6. Explain the 	difference 	between	a	reference to 	an	array and 	an	array 	object.
7. Describe how arrays are passed to subroutines as variable parameters.

Algorithms

Students	should	be	able	to:

1. Implement simple algorithms in a high-level programming language.
2. Devise	 algorithms to solve simple problems, such as array comparison or	finding	a

minimum	 value.
3. Describe the linear and binary search algorithms, recognizing where each is

appropriate.
4. Implement the linear search algorithm.

