

CHAPTER 8

UNDERSTANDING & COMMUNICATING ABOUT ECOLOGICAL CHANGE:

DENESOLINE INDICATORS OF ECOSYSTEM HEALTH

Brenda Parlee (University of Manitoba)

Micheline Manseau (Parks Canada and University of Manitoba)

and Lutsel K'e Dene First Nation

INTRODUCTION AND BACKGROUND

Ecological indicators are used by many indigenous peoples to understand and communicate about ecological change (Berkes 1999; Berkes _et al._ 2000a). “They have been used for centuries to guide environmental and livelihood planning and action, long before scientific knowledge attempted to understand the processes of environmental change and development” (Mwesigye 1996, 74). Among the Cree and Inuit of western Hudson Bay, indicators are the voices of the earth that are always talking to us (Tarkiasuk 1997). For many Aboriginal peoples, physical and spiritual signs and signals that the land is healthy are very important to their own feelings of health and well-being and that of their communities. As described by a Cree man from Chissasibi, “If the land is not healthy, how can we be?” (Adelson 2000: 6).

Recent work on traditional knowledge and ecological indicators has focused on specific resource management issues such as agricultural land management, desertification, sustainability in mountain forests, and climate change (Mwesigye 1996; Berkes _et al._ 2000; Kofinas _et al._ 2002). In some cases, the research has provided direct insight into the links between environmental and human health. An emerging body of literature on First Nations health in Canada, for example, reveals how indicators of environmental decline correspond directly with many social and human health problems (Hambly 1997). While the most meaningful indicators may be those that are developed on a site-specific basis (Berkes _et al._ 2000b, 388), there are commonalities in the way indigenous peoples interpret changes in the health of their environment. For example, the percentage of body fat of birds, caribou, and other animals at harvest is one ecological...
health indicator which appears to be common among many indigenous groups, including the Cree of northern Quebec (Berkes 1998, 8), the Gwich’in of Alaska (Kofinas et al. 2002), and the Maori of southern New Zealand (Lyver 2002). Many indigenous groups in circumpolar regions use similar indicators related to ice and weather conditions to communicate about complex changes associated with global warming (Riedlinger and Berkes 2001; Krupnik and Jolly 2001). As part of the key findings, these studies have provided insight into the sophisticated knowledge systems of local land-based cultures and their capacity to learn and adapt to ecological change.

This chapter focuses on ecological indicators developed by the Denesoline of Lutsel K’e Dene First Nation in the Northwest Territories to understand and communicate about changes in the health of their ecosystem or the “land”; this includes changes that have taken place over a long time period, at different geographic scales and change beyond natural variation. The study of these indicators also builds on previous arguments about the capacity of land-based cultures to learn and adapt to complex ecological change and the value of traditional knowledge in resource management (Berkes et al. 2000a).

THE DENESOLINE AND THEIR COMMUNITY

Lutsel K’e, formerly called Snowdrift, is a community of 377 Chipewyan Dene (Denesoline) located on the east arm of Great Slave Lake in the Northwest Territories. It is the most northerly Chipewyan-speaking Dene community, situated at the treeline (62° 24’ N / 110° 44’ W). Like many other northern Dene communities, Lutsel K’e has experienced significant social and economic change over the last fifty years. Traditionally the Denesoline were known as the most widely travelled of the Athapaskan peoples, inhabiting a vast area from Great Slave Lake east to Hudson Bay and from the mouth of the Coppermine River near the Arctic Circle to Wallaston Lake in present day Saskatchewan (Smith 1981, 271). Although the Denesoline now live in a more permanent settlement on Great Slave Lake, they still retain many aspects of their traditional harvesting economy, frequently travelling in an area of over 500 square kilometres from present day Yellowknife east to the Thelon River and from Aylmer Lake to Nanacho Lake in the south. Of particular significance is the Lockhart River; its headwaters flow southeast from Mackay Lake to Artillery Lake and then to Great Slave Lake (Figure 7.1). Straddling the border between the boreal forest and the tundra, the Lockhart River and Artillery Lake area is a rich ecosystem hosting a diversity of wildlife, vegetation, and landscape features representative of six different terrestrial eco-regions (Northwest Territories Centre For Remote Sensing 1998, March 13). Negotiations are underway between Lutsel K’e Dene First Nation and the federal government to protect this area as a National Park.

DEFINING ECOLOGICAL INDICATORS

Denesoline knowledge of this ecosystem was documented during the Preliminary Traditional Knowledge Study in the Gahcho Kué Study Region and The Traditional Ecological Knowledge in the Kaché Kué Study Region (Parlee et al. 2001). These projects were carried out in collaboration with Lutsel K’e Dene First Nation Chief and Council, the Wildlife, Lands and Environment Committee, and an Elders’ Committee. Denesoline elders from Lutsel K’e defined the Artillery Lake and Lockhart River as the area of interest during project scoping in 1996 and again in 1999 (Parlee et al. 2001; Bielawski and Lutsel K’e Dene First Nation 1992). On the recommendation of the elders being interviewed, the identification of the indicators followed the Denesoline harvest calendar, beginning with waterfowl in early spring (May) followed by fish (June-August), caribou (August-October), and fur-bearing animals (December-February).

Community researchers were the primary information gatherers for both projects. Additional support was attained from an academic advisory committee. The community-based research effort for these projects was involved and substantial. Data collection occurred through individual and small group semi-directed interviews with twenty-seven to fifty Denesoline elders and harvesters. Most interviews were audio and/or video recorded by community researchers using translators during on-the-land workshops with elders and caribou harvesters. Data were also collected on 1:250,000 and 1:50,000 scale maps and integrated into the community geographic information system. Stories shared during small group interviews and elders’ meetings were also recorded through minutes.

RESULTS

Over many generations, the Denesoline have developed a significant body of knowledge about the Lockhart River and Artillery Lake
Barren ground caribou (Rangifer tarandus groenlandicus) is the most important source of traditional food for the Lutsel K’e Dene; the movements of the Bathurst and Beverly caribou herd have been recognized as a key driver of their traditional land use patterns and social organization (Irioto 1998; Jarvenpa and Brumbach 1988). In spring and fall, the Denesoline also include several species of geese and ducks as part of their diet; northern pintail (Anas acuta), scaup (Aythya spp.), and white winged scoter (Melanitta fusca). Lake trout (Salvelinus namaycush), lake whitefish (Coregonus clupeaformis), round whitefish (Prosopium cylindraceum), and lake herring (Coregonus artedi) are also an important part of the diet in summer months, as are many berries and plants, including cranberries (Vaccinium vitis-idaea), blueberries (Vaccinium uliginosum), Labrador tea (Ledum groenlandicum), and spruce gum (Picea glauca, P. mariana). During the winter trapping season, wolverine, wolf, and fox are also harvested in the region. The indicators, or signs and signals, used by the Denesoline to understand and communicate about change in the health of these species revolve around four major themes: body condition (Table 8.1), species abundance and distribution (Table 8.2), quality of land and water (Table 8.3), and Denesoline cultural landscapes and land features (Table 8.4).

Indicators can be defined and presented in many different ways (Meadows 1998); the indicators presented here are purposely framed as questions in terms that have meaning in the community of Lutsel K’e. Framed as questions, they become more than tools for describing ecological change; they become tools for ongoing learning and communication with the elders and harvesters that hold and have ownership of this knowledge.

Body Condition

The percentage of body fat is an indicator commonly used by Denesoline to interpret and communicate about the health of waterfowl, fish, caribou, and fur-bearing animals; if the animal is fat then the hunter is happy (JBR 10 15 98). In a caribou workshop in 1999, elder J.B. Rabesca described how a fat caribou could be identified by a wide chest, tail hidden in hindquarter, busy set of antlers, and a well-developed coat (JBR 10 15 98). Wildlife behaviour can also be an important sign of good body condition; if the caribou is jittery it is a signal to hunters that the animal is young and the meat more tender (JBR 10 15 98). Hunters can tell if the birds are fat by their behaviour during flight; fatter birds will fly lower over the water and are slower and clumsier when taking off or landing. Harvesters evaluate the length/weight ratio of fish to determine if they are fat; if the fish is expected to be fat but is found skinny, it is considered “sick” (Parlee et al. 2001).
disease such as broken limbs, lesions, parasites, poor colour, or smell is often a
also indicate whether the bird, fish, or animal is healthy. Any internal injury or
of the fish flesh is also important; if the flesh is too soft, for example, the fish
ing from their fall migration with shorn or broken legs are signs to elders that
eliminate the fish. The texture as well as the colour
indicators related to cultural landscapes and land features

Table 8.4

<table>
<thead>
<tr>
<th>Denesoline Indicators Related to Cultural Landscapes and Land Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dechen Nene (forested areas south of the treeline)</td>
</tr>
<tr>
<td>Dechen Nene (dry flatland/wet marshy land)</td>
</tr>
<tr>
<td>Hazu Kampa (at the treeline)</td>
</tr>
<tr>
<td>Hazu Nene (Barrenlands)</td>
</tr>
<tr>
<td>Eda (Caribou Crossing)</td>
</tr>
<tr>
<td>Ts’u dzaa (Small Stands of Trees at the treeline)</td>
</tr>
<tr>
<td>K’a (Heights of Land with Erratics)</td>
</tr>
<tr>
<td>Thai t’ath (Eskers)</td>
</tr>
<tr>
<td>Nikele (Dry Flatland)</td>
</tr>
<tr>
<td>Ni horelghas nene (Wet Hummocky Land)</td>
</tr>
</tbody>
</table>

The outward appearance, including well-developed plumage, scales or coat,
also indicate whether the bird, fish, or animal is healthy. Any internal injury or
disease such as broken limbs, lesions, parasites, poor colour, or smell is often a
sign to hunters that the animal is unhealthy. The texture as well as the colour
of the fish flesh is also important; if the flesh is too soft, for example, the fish
are described as “spoiled.” In some cases injuries or diseases are also signals
that something is wrong locally or in the broader ecosystem as in the case fish in
Nanach Lake and Stark Lake (PM 04 20 00). For example, caribou arriving
from their fall migration with shorn or broken legs are signs to elders that
development activities in the region, including roads and other structures, may
be negatively affecting caribou.

Wildlife Abundance, Distribution and Diversity
Indicators of species abundance, distribution, and diversity are also used by the
Denesoline to understand and communicate about ecological health (Parlee et
al. 2001). The abundance of caribou is particularly significant. Elders nostalgically
describe periods when caribou were more abundant – “there were so many
caribou, it would just feel like the ground was moving” (HC 02 02 00). They
also describe periods when there were very few caribou and people were very
hungry (AM 06 11 97). Today, there is still tremendous joy associated with the
return of the caribou and fear associated with a population decline (JBR 09 15 99).
The abundance of wolves and foxes is also a sign that the land is healthy
and can also signal hunters of caribou in the area. Trappers are particularly
happy when animals are abundant for social and economic reasons; as with
other harvesting activities, species abundance increases opportunities and
success of harvesting.

Species abundance is an indicator of ecological health strongly associated with
respect. If people do not respect the animals then they will not come back, give
themselves, or return to the people. For example, chasing caribou is forbidden.
Hunters are also careful not to be arrogant toward the ducks and geese or play
with (catch and release) the fish (JBR 09 15 99; EC 06 29 99).

The Denesoline associate the abundance of each species with different places
in the Artillery Lake/Lockhart River area. If large numbers of birds are using the
same staging areas and migration routes each year, it is a sign that the birds
and the land are healthy. Changes in the range and habitat of different species
are often signs to elders that something has changed in the region. For example,
recent increases in the number of bears around the community and moose along
the treeline in the Artillery Lake area have caused anxiety and confusion. To
some elders it is a sign of habitat disturbance or loss in their region and to the
south (JC 01 15 01; PC 01 15 01).

Characteristics and Quality of the Land and Water
Indicators related to wildlife habitat largely revolve around the cleanliness of
the land and water as the base of the food chain. The cleanliness of the water is
of particular concern (PC 01 29 01; ML 09 15 99).

That the land and water is free of visible signs of waste is particularly
important; leaving garbage is a significant sign of disrespect in Denesoline culture.
Many Denesoline are even more concerned about the waste on the land and in
the water that they cannot see, including long-range pollutants (Pops), leaks
and spills from vehicles and equipment, and bacteria and disease originating
from remote locations. While most people feel that their land and water is
generally very clean, there is concern about certain areas where development
has taken place in the past or may occur in the future. Of particular concern is
the quality of drinking water from lakes and rivers. Elders often highlight the increased levels of mercury in the Talston River and Nanacho Lake caused by a 1960s hydroelectric project and the perceived contamination of Stark Lake as a result of uranium exploration in the 1950s. The current and potential effects of diamond mining activity on the health of the land and water are also a concern. One elder talking about mining in the region remarked, “soon we won’t even be able to drink our water from our own lake” (Parlee et al. 2001).

Denesoline Cultural Landscapes and Land Features

Signs and signals of ecological changes can also revolve around specific places or areas of the landscape commonly used by the Denesoline. Places such as **eeda cho** “big caribou crossing,” “**desneth’a**” where the water flows out” and **des delghai** “white water river” also refer to specific areas of ecological as well as social significance. In addition to the information they provide about the biophysical landscape, they inform us of the ecosystem as a whole and the role of the Denesoline within the system.

For example, the **Denesoline** associate the fall migration of the caribou with key water crossings or bifurcation points on the caribou range. Caribou movements through these crossings are signals of where and when to look for caribou during the winter months. A large number of caribou crossing at **eeda cho** at Artillery Lake, for example, is a signal that the herd is likely to over-winter in the eastern part of their range. Their use of crossings from McKay to Benjamin Lake indicate the winter grounds may be further to the west. Another useful land feature are the **ts’iu aze di a si** or the small stands of black spruce (*krum-molzh*) and willow found in the valleys and along rivers on the barrens. Given the scarcity of shelter and firewood on those open landscapes, these clumps of dwarf trees are valuable, particularly during winter. Hunters also use them as campsites and meeting places to exchange information about caribou movements, numbers, and behaviour (Parlee et al. 2001).

Some place names reflect on the Denesoline culture and spirituality. One of the most important cultural and spiritual sites is **ts’ankui theda**, or the “old lady of the falls,” located on the Lockhart River; the **Denesoline** visit the site every year to seek spiritual guidance and direction. Other sacred sites in the Artillery Lake area include Beaver Dam and Hachoghe’s Shovel; the significance and origins of the landscape features are also explained in **Denesoline** legends that have been passed on through oral histories.

These place names reflect these many different social, cultural, spiritual, and ecological values as an integrated whole. **Kahdele**, for example, is more than a physical descriptor for “areas of open water in winter”; the **Denesoline** have named, used, and recognized these places for thousands of years as critical for their own well-being as well as that of many wildlife species (Parlee et al. 2001). Early or permanent open water on rivers, lakes, and estuaries or **askui** is valued similarly among the Innu of Labrador (Innu Nation 2001). Birds depend on those areas to feed in spring, when returning from migration. Fish benefit from the high primary productivity of these areas. Fur-bearing animals depend on the abundance of food around those areas of open water at key times of the year when prey become scarce. The potential loss of those areas of open water means more than a change in the ice or freezing pattern; it relates to changes of an entire ecosystem.

DISCUSSION

The indicators developed by the **Denesoline** have enabled them to understand and communicate about complex changes in their environment for many generations. They reflect or capture different aspects of ecological health, and they provide us with insight into the quality and condition of species of key importance to the **Denesoline**. Furthermore, the indicators also reflect on the interconnections between individual species and the “land.” Similar to the concept of ecosystem, the “land,” or **nene** in the Chipewyan language, reflects on all aspects of the physical as an integrated whole; the Chipewyan concept also perceives a spiritual dimension. The **Denesoline** conceptualization of the land is also based on the understanding that human beings and the environment are interconnected. An undisturbed and productive tundra landscape lends itself to a stronger and healthier caribou population; clean water is critical for healthy populations of whitfish and trout and sustainable harvesting of these species is the foundation of sustainable and healthy communities.

The indicators themselves are not necessarily different from those already in use by NGOs and in government programs such as the Arctic Borderlands Knowledge Coop, EMAN North and the Department of Fisheries and Oceans (see the DVD at the back of this volume). More important, perhaps, than their technical character, these indicators are cultural symbols that reflect how the **Denesoline** see, hear, and feel about change in their environment. In addition to marking and measuring ecological change as part of their oral history, the **Denesoline**, like other land-based peoples, have experienced those changes, their sensitivity heightened by their dependence on resources for survival. As explained by one **Denesoline** elder: “Some people who don’t care so much won’t notice the changes” (ML 05 11 00).

Diachronic Indicators: Reflecting Change over a Long Time Period

Denesoline legends, as well as archaeological evidence, provide clues as to the longevity of their knowledge system, including their indicators of ecosystem health. For example, **Denesoline** knowledge of caribou movements around Artillery Lake is likely five thousand years old. Elders say this area has always been good for caribou; stone lanceolates (arrowheads used for killing caribou) found in that area have been dated back to 3000 BCE (Macnich 1951; Noble 1981). Some **Denesoline** legends, including “the Old Lady of the Falls” and “How the Bear who Stole the Sun,” suggest that **Denesoline** knowledge of this area may date back to the post-glacial period.
After the world was created, things were not always the same. There were ups and downs. One time, the sun disappeared. After the sun was gone, it was only winter and there was lots of snow falling. There was no sun and that is how people stayed. (Excerpt from ZC in Parlee et al. 2001)

All of the other Dene people followed Hachoghe who was chasing another beaver down the river. They were heading toward the east arm of Tue Nedhe. After a while, the people noticed that the woman was still back at the falls. So Hachoghe picked two healthy people to go back and look for her. They went all the way back up the Lockhart River and they found her sitting at the falls. She had been sitting there a long time and so she was stuck in the earth. The two people told her that Hachoghe was asking for her to return to Tue Nedhe. She said, “I cannot return with you. I have been sitting here too long and now I will be here for all eternity.” (Excerpt from ZC in Parlee et al. 2001)

The exact time period in which these legends originated is not clear; the connection between such narratives and signs and signals used today to understand ecological change is not always obvious. Both legends describe significant ecological events: glaciation and changing patterns of water drainage. Other Dene legends with similar geomorphological references have been dated to about 8000 BCE (Hanks 1997, 182).

Stories about the importance of respecting animals and about the behaviour of men and women are told more as cautionary tales with very human characters. This might suggest that these stories originated more recently, or within the past several generations. Other knowledge and experience with ecological change, such as the changes that occurred as a result of the Talston hydroelectric project and the Stark Lake uranium mine (1950s–60s) developed in the very recent past.

While the oral history about events that occurred a thousand years ago are clearly less detailed than information generated in the recent past, it is useful to consider how information about critical events has been retained through time and how this information is integrated as a whole over time. The strength of Denesoline traditional knowledge is not in accumulating objective empirical observations or “data” about isolated events that can be compared a thousand years from now. The strength is arguably in the capacity of the Denesoline to interpret and use their empirical observations day after day, year after year, and decade after decade. The test, of course, is survival; for without accurate knowledge of their environment, they would have succumbed to the harsh Subarctic environment.

Scaling-Up of Denesoline Knowledge

Indicators presented here reflect an understanding of ecosystem health around the Lockhart River and Artillery Lake. However, Denesoline knowledge was not limited to this geographic area; the large-scale movements of the Bathurst caribou herd meant that the Denesoline travelled, observed, and communicated observations over large areas.

Most Denesoline knowledge of caribou and caribou movements reflect their vantage point on the fall and winter range of the herd. The elders’ characterization of the migration cycle begins when the caribou return to the Lockhart River/Artillery Lake region in the fall and ends when the caribou leave the area in March. In contrast, Inuit elders from the Bathurst Inlet area describe the migration from the spring and summer range of the herd (Thorpe et al. 2001). Effective harvesting of the caribou required an understanding of caribou movements beyond the Lockhart River/Artillery Lake area. As a result, the Denesoline hunting parties were known to share information about caribou movements with one another to maximize the opportunities for harvesting.

Such extensive social networking was made possible in part because of the Denesoline predilection for widespread travel; they are recognized as the most well-travelled of all the Athapaskan peoples (Smith 1981). Successful interpretation and communication about ecological events or processes that would affect their movement on the land, such as changes in water levels, ice conditions, weather patterns, or grizzly sightings would also be key to successful hunts.

Traditionally, this scaling up of knowledge was important for successful harvesting; increasingly, there are other issues that make knowledge networking important.

In the western Hudson Bay region, for example, Inuit and Cree observations of weather and sea ice conditions were linked together to provide a regional picture of climate change (McDonald et al. 1997). The Arctic Borderlands Knowledge Coop provides a forum for communities in the Porcupine Caribou range to share their observations and experiences around such issues as non-renewable resource development and climate change (www.taiga.net). A circumpolar project, ‘Rangifer,’ aims to pull together local knowledge with respect to caribou (www.rangifer.com). In all these examples, a composite picture of regional ecological change is drawn from the local observations and the knowledge of local communities.

Recognizing Change beyond Natural Variation

While these indicators of health provide a general picture of how the Denesoline understand and communicate about the land, they are by no means employed uniformly; they are applied using traditional knowledge of natural variation. Based on continued interactions with the land and communication over the generations, the Denesoline are in a favourable position to determine whether changes are related to natural variation or anthropogenic activities (McDonald et al. 1997). For example, female caribou arriving at the treeline in early fall are
much skinnier and rougher in appearance than later in the fall because they have been nursing their calves; harvesters do not consider these animals to be unhealthy. Fish in some barren land lakes are softer and skinnier than in lakes along the treeline; however, harvesters interpret this as “normal.” Other examples of this natural variation relate to the abundance and diversity of waterfowl and fish. The population of fish in the east arm of Great Slave Lake is perceived as good or greater than in the past (EC 06 29 99). However, according to the elders, the abundance and diversity of waterfowl has declined. There used to be many more ducks and geese in the past compared to today (AM 04 20 00). They suggest that the population of black ducks or white-winged scoter (Melanitta fusca) is much lower today than it was in the past.

The capacity to understand and communicate about change beyond natural variation is expressed in the following way: elders distinguish between natural change as *edo* and change that is perceived as unnatural – *edo aja* – which translates directly as “something has happened to it”; what is considered unnatural disturbance is generally a disturbance that the community perceives as interrupting or interfering with recognized ecological patterns relationships or cycles. Many of the interferences described as *edo aja* are anthropogenic; the environmental effects of mining, hydroelectric development and long-range contaminants are all perceived as unnatural. Ecological events or changes that have not been documented within the social memory of the community are also described in terms of *edo aja*. For example, decreasing water levels in the region are described here by elder Maurice Lockhart:

> We have been losing water but I don’t know why. All the small lakes [ponds] on the barrenlands are disappearing as well as the small streams and creeks that flow between them. That is why the water is no longer healthy to drink. (ML 08 28 00)

Other elders observing erratic weather events, including unseasonably warm weather and unpredictable winds and storms, attribute the change to global warming.

> The climate is changing. The wind blows harder than it did in the past. Its different – the wind picks up quickly and changes quickly. Now I don’t know what has happened…. A long time ago my sister and I traveled on the Snowdrift River to Siltaza Lake. We never saw any rocks along that river but today you can see lots of rocks [the river is shallow]. (ND 05 11 00)

Of particular concern is the increased incidence of lightning storms and forest fires in the region. Elders have said that until recently (the last five years) they had never seen a forest fire caused by lightning. (PM 11 06 00)

> Regarding the forest fires – some scientists say it’s good for new growth. But do you know what the caribou eat? If the lichen burns, it will take over 100 years for the plants to grow back. Some scientists say the forest fires are good, but it’s not like that for us. We look after the land and we respect the land and the animals. (PM 11 06 00)

This capacity to differentiate between natural and unnatural change in their local environment is key to understanding a variety of resource management problems. One major problem exists in the Nanula Tue area. In the 1960s, a hydroelectric dam developed on the Talston River, flooded Nanula Tue, which was once an important fishing and trapping area as well important habitat for overwintering for caribou. As a result of this activity, the Lutsel K’e Dene are no longer able to fish, trap, or hunt in that area, and winter travel through that area has become dangerous (Bielawski and Lutsel K’e Dene First Nation 1992). Some of the problems that are now visible are described here by elder Pierre Marlowe.

> Long ago at Nanula Tue, before they built the dam there were good fish – just like Great Slave Lake fish. Now they have a dam on the Talston River and the fish are different. I remember before they built the dam, I trapped around there…. When the dam was built there – there were lots of changes. You can’t eat the fish now because it’s soft and skinny. (PM 1999)

Another such problem exists in a nearby lake, once a key fishing area for Densoline hunters. In 1952, however, exploration for uranium in the area resulted in the development of a small mining operation on a peninsula of land in the lake. Today the elders recount their concerns about the water and the fish being spoiled as a result of this uranium exploration.

> The fish in Stark Lake are a problem. Since the mine [uranium exploration site] was put there … the fish are different – the water too. In another ten years, maybe we won’t be able to drink the water from our own lake. There are lots of elders who have passed away from cancer already because of it. (PM 04 20 00)

These changes not only have implications for the long-term health of the biological environment; they also have profound effects on the health of the community. People worry about what will happen to the land and their children in the future. As in other communities that depend significantly on the land and resources for their livelihood, these unnatural changes are the cause of significant anxiety.

> People living directly from the land and water around them are acutely aware of indications that things are right or wrong with the natural world…. Unnatural disruptions – for example river impoundment and regulation, or environmental contamination – are profoundly disturbing and give rise to deep seated anxiety and insecurity. (Usher et al. 1992, 114)
As Usher et al. (1992) point out, the traditional economy is grounded in peoples’ sense of security about their ability to access an abundant natural resource base. If the security of that resource base or their access to it is compromised, or is threatened, so too is the community. Bielawski (1992), in her work on the impacts of the Talston River hydroelectric development, suggested that the greatest impact was the frustration over their inability to prevent the damage that occurred, as much as it was the impact of the damage itself.

Communicating about Ecological Change

Where indicators have meaning within a community, they can also be vehicles of cultural continuity. Such symbolic indicators are sometimes described as “community indicators” because of their meaning to a specific community or people, or “beloved indicators” (Meadows 1998). At a very basic level these indicators are cultural symbols that help convey or tell others about a given experience or observation.

The symbolic value associated with the indicators developed by the Denesoline is visible in their cultural narratives. For example, the importance of the Artillery Lake as a caribou crossing is well defined in stories passed on by Denesoline elders. Other stories describe changing water levels in different lakes or rivers (ND 05 11 00), common migration routes for ducks and geese, and dangerous areas for travel in winter. Stories about the impacts of the Talston River hydroelectric project or the Stark Lake uranium exploration site are also told and retold to ensure that current and future generations are aware of the dangers of harvesting in those areas. In some cases, stories or words are not necessary to share information. For example, information about the fatness of ducks can be conveyed through the smells and sounds of meat cooking over an open camp fire. Traditionally, hunters could gain insight about the movements of caribou across their fall range by the numbers of animals harvested at different fall camps. Insights about the abundance of fish in a given location could be gained by observing family stores of dry-fish.

Learning and Adapting to Ecological Change

Historically, the capacity of the Denesoline to use these indicators to learn and adapt to their changing environment has been critical to their survival. Empirical observation over a long time period is the foundation of that capacity to learn and adapt. Such observations revolve around a diversity of indicators and measures as described in this chapter. Some indicators may be quantitative, as in the abundance of caribou or whitefish, or based on qualitative perception. In Lutsel Ke’, Denesoline hunters used the information about movements and abundance of caribou and other wildlife to make decisions about where and when to hunt in order to feed their families. They watched signs of changing weather and ice conditions to ensure safe travel while trapping for furs in the barrens. Careful inspection of the condition of animals being harvested was important in preventing illness. However, empirical observation is only the first stage of knowledge generation (Berkes 1999; Roots 1998). Critical to a discussion on the role of TK in resource management is the recognition of how observation becomes knowledge and wisdom in Aboriginal culture. Observations of one hunter or elder in a community cannot necessarily be construed as traditional knowledge; it is only after these observations are verified and interpreted along with other observations from the past and present that it may be considered to be knowledge. Traditionally, this verification and interpretation would have occurred informally through family groups. Today, elders’ committees and harvester councils often fulfill that role.

The capacity of the Denesoline to successfully adapt to their changing environment may be based on the horizontal or non-hierarchical nature of their traditional social order (Smith 1981). Although there were some important and wise elders who exerted influence over large numbers of people from time to time, decisions about how to work together, where and when to hunt, trap, and fish were fundamentally made by individuals within small family groups. The size of camps would increase or decrease depending on the size of the family and social need as well as on the work involved in harvesting. For example, the groups associated with caribou harvesting were traditionally larger than those associated with duck hunting or fishing because of the uncertainty associated with finding caribou in the vast geography of the fall and winter range.

This non-hierarchical social order still influences how decisions are made today, including how the Denesoline deal with ecological change. In the case of diamond mining activity, for example, individuals representing different family groups seek to be involved at all levels of planning and management of these projects, from the act of observation and monitoring to data interpretation...
and analysis, site management, and policy making. Although these roles and tasks are framed very hierarchically in a government or industry setting, for the Denesoline, they cannot be separated from one another. This is illustrated in the following quote from J.B. Rabesca, who, in one short statement, shares his empirical observations, hypotheses about potential effects, and recommendations for managing and mitigating those effects:

I have seen the caribou around that place [the mine]. I am concerned that if the caribou start eating the food around the mine area. Anything that spills on the ground is taken up by the plants. There is muskeg in that area too. The spills will stay in that area. Someone said that they would put up a fence in that area but they haven’t done anything yet. If they put a fence in that area – we wouldn’t worry about the caribou. It’s not good to have caribou in the mining area. (JBR 02 14 01)

This integrated approach demonstrated by the Denesoline can be a guide to building an integrated resource management approach in which land users play a fundamental role, not simply as technical assistants or stakeholders, but as decision makers with a well-developed understanding of complex ecological change.

CONCLUSION

The health of northern ecosystems is changing at an alarming rate; “the earth is moving faster now” (Krupnik and Jolly 2001). The current and potential effects of non-renewable resource development, the presence of people and other contaminants in the food chain, and the impact of climate change are causes of significant anxiety for the Denesoline and others who have lived on the land for many generations. Addressing these issues of ecosystem health is complex; “environmental change does not lend itself to analysis by conventional approaches” (Berkes and Folke 2002, 336). In addition to addressing tough biophysical questions, there are many complex social, economic, and cultural implications to consider. This human dimension of ecosystem change is often overlooked; the debate over climate change is one example (Riedlinger and Berkes 2001).

The indicators presented here provide useful insight into some of the complex ecological changes being observed and experienced by northern communities, however, indicators are not an end result; they are only a window into what remains a relatively untapped system of local and traditional knowledge about our changing environment.

ACKNOWLEDGMENTS

This chapter is dedicated to the community members of Lustel K’e Dene First Nation whose knowledge, generosity, and commitment have made this work possible. Particular thanks to the Band Council, Wildlife Lands and Environment Committee, Florence Catholique, Evelyn Marlowe, Wally Desjardais, Marcel Basil, Terri Enzoe, Nancy Drybones, Bertha Catholique, Archie Catholique, Lawrence Catholique, Charlie Catholique, August Enzoe, JB Rabesca, Albert Boucher, Jeanette Lockhart, Shawn Catholique, Stan Desjardais, and James Marlowe. Funding for the research was provided by the West Kitikmeot Slave Study Society. Additional thanks to Dr. Fikret Berkes and the University of Manitoba for their support.

REFERENCES

Parlee, Manseau & Lutsel K’e Dene First Nation

Krupnik, I., and D. Jolly. 2001. The earth is moving faster now: indigenous observations of arctic environmental change. Fairbanks, AK: ARCS.

182 BREAKING ICE

Chapter 9

Wildlife Tourism at the Edge of Chaos:

Complex Interactions Between Humans and Polar Bears in Churchill, Manitoba

R. Harvey Lemelin (Lakehead University)

Introduction

Whether wildlife tourists are attracted to Point Pelee National Park to view the annual bird migrations or to the Subarctic environment of Churchill, Manitoba to witness the large, predictable aggregation of polar bears, tourist behaviours and ensuing management strategies in these instances have generally been viewed in terms of the rationalist/functionalist paradigms of scientific inquiry. Through this approach, variances deviating from the norm have been frequently dismissed as exceptions or “noise” (McKercher 1999). Consequently, researchers in the tourism field have tended to overlook key events and individuals that are often implicated in triggering major shifts in the configuration of tourism developments in an area. As a result, “our understanding of the dynamics of change in tourism has suffered” (Russell and Faulkner 2003, 220).

Complexity provides an alternative perspective enabling researchers to acquire a greater understanding of the change process (Urry 2003). In contrast to the rationalist/functionalist paradigm mentioned earlier, complexity interprets systems as being inherently unstable and dynamic (Kellert 1993). Hence, individual differences and random externalities are, from this perspective, recognized as having the potential to precipitate major realignments in systems through disequilibrium and positive feedback processes. Thus, from a complexity perspective, change is the only constant. Since tourism developments along the Hudson Bay coastline in northeastern Manitoba can be associated with the actions of individual actors and key events, complexity can, therefore, provide a useful framework for understanding the integrated management of coastal zones and analyzing the creation and growth of wildlife tourism in this area.

A historical case analysis composed of a literature review, oral histories, on-site observations, and interviews was used to understand the events and