Workshop Paraty, RJ, 08-09 Dec 2010

Ecology of reef fish in southeastern Brazilian coastal islands: are there artisanal fishing effects?

Research team: diving volunteers (to be found)

Renato A. M. Silvano

Dep. Ecology/ Universidade Federal do Rio Grande do Sul (UFRGS) Fisheries and Food Institute/ FIFO

Main Goals

$>$ Analyze the density of commercial reef fishes in islands exploited by fishing communities in the Paraty bay
$>$ Compare environmental and fishing variables
$>$ Compare with fishers' LEK

Fishers' local ecological knowledge
Renato Silvano
Priscila Lopes

Fish production Alpina Begossi

Fish ecology (this study)

 Renato SilvanoEcology and Ethnoecology of snooks and grouper
Vinicius Nora

Fish genetics

Regina Priolli

Questions and Hypotheses

1. Which factors are related to the density of commercial fishes in the studied islands? Relationship: density of fishes X fishing intensity H1: Negative relationship: fishing effects? H2: Positive relationship: environmental variables?
2. Do the islands that show a higher fishing CPUE have more fish? H: Islands where fishers catch more fish would have higher fish density.
3. How patterns on fish density relate to fish genetics?

Where? Study site

10 islands and 'lajes' (submerged rocks) in Paraty bay
Fish landings data ($\mathrm{n}=293$) from Nov 2009 to Aug 2010: Vinicius and Robson

Islands

1. Ilha dos Meros
2. Parcel dos Meros
3. Ilha Rapada
4. Ilha da Espia
5. Saco Mamanguá
6. Ilha dos Ganchos
7. Laje Branca
8. Ilha do Algodão
9. Ilha Araçatiba 10.Ilha Araraquara

Fish landings
17
18
0
0
19
4
0
36
4
\% of total landings
0.3

6
6
0
0
6
1
0
12
1

Map from Begossi et al. 2010
$>$ Logistics: distance and diving conditions
$>$ Only the island side facing the mainland

Additional potential sampling sites: from the recorded fishing landings

Islands and sites	Fish landings	\% of total landings
11.Galeta	32	11
12. Ingaeiro	19	6
13. 7 Cabeças	12	4
14. Ponta de Leste	10	3
15. Tapicirica	7	2
16. Iha do Cedro	6	2
17. Iha do Araújo	6	2
18. I. do Ventura	4	1
19. I. Caroço	3	1

How? Sampling methods

$>$ Underwater visual census (UVC) of reef fish
$>$ Transects: count fish > 5 cm over a tape at the bottom ($200 \mathrm{~m}^{2}$)
$>$ One to three transects per island (depending on size): islands are replicates
$>$ Size estimated to 5 cm classes, studied species identified on site
$>$ Point records of substrate at each 2 m

Commercial reef fishes:

Serranidae (groupers): Epinephelus spp., Mycteroperca spp.
Lutjanidae (snappers): Lutjanus spp.
Epinephelus
Centropomidae (snooks): Centropomus spp.

Lutjanus

Centropomus

Non-commercial fish species: controls to fishing effects Haemulon aurolineatum (Haemulidae)
Abudefdux saxatillis (Pomacentridae)

H. aurolineatum

A. saxatillis

Data analyses: multiple regression, correlations

Dependent Variables:

$>$ Fish density (fish/ m^{2}) in number and biomass (estimated from size)

Independent (explanatory) variables:

>Environmental: depth, habitat complexity (bottom cover), lunar phase, distance from the coast
$>$ Fishing: fishing intensity (number of fish landings), number of fishermen that mentioned the island, catch per unit of effort (data from fishing project), management regimes?

Expected results

Provide data that may contribute to:

$>$ Conciliate fishing, fish conservation and maintenance of

fish stocks

> Understand fish distribution patterns
$>$ Baseline data to future monitoring
$>$ Compare fish landings, fishers' LEK surveys and fish density: insights to management

Acknowledgements

- To IDRC for funding support
- To organizers Alpina Begossi and Shirley P. Souza
- To Vinicius and Robson for fish landings data
- To you by your attention

