Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing

Josef Goldufsky, BS1; Stephen J. Wood, PhD1; Vijayakumar Jayaraman, MS1; Omar Majdobeh, MD1; Lin Chen, PhD2; Shanshan Qin, PhD3; Chunxiang Zhang, MD, PhD3; Luisa A. DiPietro, DDS, PhD2; Sasha H. Shafikhani, PhD1,4,5

1. Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
2. Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
3. Department of Pharmacology, Rush University Medical Center, Chicago, Illinois
4. Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
5. Cancer Center, Rush University Medical Center Chicago, Illinois

Reprint requests: Sasha Shafikhani, Rush University Medical Center, Chicago, Illinois 60612. Tel: (312) 942 1368; Fax: (312) 942 2808; Email: Sasha_Shafikhani@rush.edu

Manuscript received: July 25, 2014
Accepted in final form: April 22, 2015
DOI:10.1111/wrr.12310

ABSTRACT

Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS.
ExoS is a potent inducer of apoptosis. ExoT exerts several virulence functions, including induction of potent apoptosis and inhibition of cytokinesis in epithelial cells. Finally, ExoY is an adenylate cyclase that functions as an edema factor.

We have previously demonstrated that *P. aeruginosa* uses a variety of virulence strategies that involve the T3SS effector toxins’ ability to inhibit wound healing of epithelial cell culture in vitro; however, the role of T3SS in tissue repair impairment in *P. aeruginosa*-infected diabetic wounds has not been examined. Using PA103, a strain of *P. aeruginosa* which lacks the ability to form biofilm, and C57B/6 and db/db mice models for normal and for type 2 diabetes, respectively, we evaluated the contribution of T3SS in establishing infection and in mediating *P. aeruginosa*-induced tissue damage in normal and diabetic wounds. Our data demonstrate that *P. aeruginosa* is capable of establishing robust and persistent infection in diabetic, but not in normal wounds. Consistent with this infection data, we found that *P. aeruginosa* causes severe tissue damage and inhibited wound repair in diabetic wounds—but not in normal wounds—in a manner, which is primarily dependent on T3SS.

MATERIALS AND METHODS

Bacteria preparation

PA103 and its isogenic T3SS mutant form (PA103 *pscJ*-gent) strains have been described previously. They were grown overnight in Luria-Bertani (LB) media at 37 °C in a nonshaking incubator. Bacterial counts were determined by optical density and confirmed by serial dilution and the determination of colony forming units (CFU) by plating on LB, followed by 48 hour incubation at 37 °C. Approximately 1,000 bacteria (resuspended in 10 μL phosphate buffered saline solution [PBS]) were added to normal and diabetic wounds.

Animal studies procedures

All procedures complied strictly with the standards for care and use of animal subjects as stated in the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National Academy of Sciences, Bethesda, MD). We have an approval from the Rush University Medical Center Institutional Animal Care and Use Committee (IACUC No: 10–094) to conduct research as indicated.

Animal wounding and infection studies

A sterile biopsy punch (3 mm-diameter) was used to punch through the full thickness of the back skin below the shoulder blades of diabetic mice C57BLKS-m *lepr* /db (db/db), or their normal littermates animals; C57BLKS-m *lepr*+/+ (db/+ or C57BL/6 mice. Bacteria was prepared as described above and added to the wounds within 10 minutes after wounding. Mice were housed in individual cages after wounding to prevent cross-contamination.

Bacteria burden evaluation

Wound tissues were harvested on days 1, 3, 6, and 10 after wounding and infection. Tissues were cut into small pieces by sterile scissors and digested with collagenase D (Roche Diagnostics, 2 mg/mL) at 37 °C for 40 minutes. The total number of bacteria was determined by serial dilution and plating on LB agar plates.

Wound healing assessment

For wound healing assessment, transparency paper was used to trace the wound edges. The wound areas were subsequently calculated using NIH ImageJ software. Wound healing was assessed, as we described previously, at 24 hour intervals by digital photography and expressed as % wound remaining, calculated as the % of original wound area (open wound area/initial wound area) X 100.

Histological analyses

For histological studies, wound tissues were harvested, fixed in 10% formalin for 48 hour, and embedded in paraffin. Wounds were transversely cut into 7-μm-thick sections from the middle part of the wound, and stained with hematoxylin and eosin (H&E), Masson’s trichrome staining, and sirius red, as we described. I&2 H&E and trichrome staining was visualized on a Nikon Eclipse Ti microscope using NIS-Elements AR software. Sirius red was visualized by polarized microscopy on a Zeiss AxioVert 200 microscope and AxioVision software.

Statistical analysis

Statistical analyses were performed by one-way analysis of variance, Bartlett’s test for equal variances, or Student t-test, using the Prism statistics software. Data are presented as mean ± standard error of the mean (SEM). p-values less than or equal to 0.05 were taken as significant.

RESULTS

PA103 establishes robust and persistent infection in diabetic wounds

PA103 is an ideal clinical strain for the studies involving the T3SS and the T3SS effector toxins. It is not flagellated and is incapable of forming biofilm, thus biofilm effects do not contribute to its pathogenesis. Moreover, PA103 is defective in lasR, thus the T3SS-independent factors, such as elastase, do not significantly contribute to pathogenesis in this isolate and the T3SS-mediated virulence functions predominate.

To assess the role of T3SS in mediating *P. aeruginosa*-induced damage in wound, we first conducted a time course infection studies to determine if PA103 is able to colonize and persist in normal and/or diabetic wounds. We used a sterile biopsy punch (3-mm diameter) to punch through the full thickness on the back skin below the shoulder blades in C57B (Normal) and db/db (diabetic) mice. These wounds received ~1,000 CFU wild-type PA103 or its isogenic T3SS mutant PA103 *pscJ*-gent (These strains have been previously described).

Tissue samples were collected on days 1, 3, 6, and 10 after wounding (~1 mm tissue from the wound edges) and evaluated for bacterial colonization after homogenization by serial dilution and plating, as previously described. In normal wounds, both wild-type (PA103) and T3SS mutant (PA103 T3SS-) strains were able to colonize and were...
detected until day 6 postinfection but by day 10, all bacteria had been cleared and no bacteria could be detected (Figure 1). In contrast, wild-type and T3SS mutant bacteria were able to cause similar infection and persist in diabetic wounds (Figure 1). The bacterial burden in diabetic wounds were generally several log orders more than their counterparts in normal wounds (Figure 1, n = 18, p < 0.0001). These data demonstrated that P. aeruginosa is capable of causing robust and persistent infection in diabetic wounds in a manner that is independent of P. aeruginosa’s ability to form biofilm.

PA103 exacerbates tissue damage in diabetic wounds in a T3SS-dependent manner

We next evaluated the role of T3SS in mediating tissue damage in P. aeruginosa infected normal or diabetic wounds. Normal and diabetic wounds were infected with PA103, PA103 pscJ-gentR (T3SS-), or treated with PBS (Mock). We monitored healing daily by digital photography, as we described previously. Regardless of the strain, all infected normal wounds healed at rates similar to the wounds in the mock group, indicating that PA103 at this titer did not impact the healing processes in normal animals (Figure 2A and B).

In contrast, diabetic wounds infected with wild-type PA103 became substantially exacerbated compared with PBS treated and the T3SS mutant-infected db/db wounds, indicating that PA103 exacerbates wound healing in a manner that depends on its T3SS (Figure 3A and B). Of note, infection with PA103 or PA103 pscJ-gentR (T3SS-) did not affect the weight of normal or diabetic mice during these studies (data not shown). This is consistent with previous reports, indicating that wound infection with PAO1...
(a biofilm-producing strain) does not affect the animal weight.5,6

To further corroborate these findings, we stained the day 10 normal and diabetic wound tissues with H&E, as described.21 Regardless of the treatment, day 10 normal wounds were fully reepithelialized, exhibiting contraction, epidermal thickening, substantial granulation associated with scar formation, and loss of hair follicles (Figure 4A). In contrast, PA103 infected diabetic wounds showed minimal reepithelialization and were substantially inflamed as quantified by the number of leukocytes present in the wound (Figure 4B, \(n = 24\), \(p < 0.05\)). Diabetic wounds infected with the T3SS mutant strain also showed increased inflammation relative to the PBS treated wounds, although their inflammation levels were still significantly less than PA103 treated diabetic wounds. Of note, wounds treated with PBS or infected with the T3SS mutant were reepithelialized, but they did not exhibit epidermal thickening or contraction.

Prompted by heightened inflammation in diabetic wounds infected with PA103 or the T3SS mutant strain (Figure 4B), and given the adverse impact of inflammation on collagen deposition and the remodeling phase of wound healing,27 we evaluated the impact of \textit{P. aeruginosa} infection on collagen deposition and connective tissue regeneration in normal and diabetic day 10 wounds by Masson’s Trichrome staining, as described.23 Consistent with the H&E staining results, normal wounds showed similar collagen depositions for all wounds regardless of treatment, as assessed by aniline blue densitometry of the wound area (Figure 5A). In contrast, diabetic wounds infected with wild-type PA103 or the T3SS mutant strain showed minimal collagen deposition (Figure 5, \(n = 18\), \(p < 0.05\)). The connective tissues in these wounds were poor in collagen bundles, as shown by Masson’s Trichrome light and diffuse blue staining. Mock treated diabetic wounds showed modest but reduced collagen compared with normal wounds (Figure 5B, \(n = 18\), \(p < 0.05\)). We confirmed the deleterious impact of \textit{P. aeruginosa} on collagen deposition by Sirius red staining in day 10 wounds (Supporting Information Figure S1).

DISCUSSION

Given that \textit{P. aeruginosa} is the most frequently detected Gram-negative bacterial pathogen even in nonbiofilm associated planktonic infections in diabetic foot ulcers,7,8,28 and given that \textit{P. aeruginosa}’s presence in wounds correlates with a poor prognosis for healing,9,10 we postulated that there are likely other virulence factors that contribute to \textit{P. aeruginosa} pathogenesis within the diabetic wound. In this communication, we focused on the role of T3SS as one such virulence factor that could potentially contribute to \textit{P. aeruginosa}–induced damage in diabetic wounds. Our rationale for these studies was based on the understanding that T3SS is a major virulence structure that is required for pathogenesis of all \textit{P. aeruginosa} strains studied thus far,13,29 and our previous reports which demonstrated the importance of T3SS effector toxins in mediating \textit{P. aeruginosa} inhibition of wound repair in epithelial cell culture.16–18

In this report, we demonstrate for the first time that \textit{P. aeruginosa} can establish a robust and persistent infection in diabetic wounds in a manner that does not depend on its ability to form biofilm (Figure 1). We also demonstrate for the first time that the T3SS plays a major role in mediating \textit{P. aeruginosa}–induced tissue damage in diabetic wounds in vivo (Figures 2–5). We found that diabetic wounds generally contained several log order more \textit{P. aeruginosa} bacteria than normal wounds (Figure 1). The impaired antimicrobial defenses in diabetic wounds are at least in part due to delayed leukocyte infiltration in
diabetic wounds early after injury21 and impaired bacterial killing by diabetic neutrophils due to reduced reactive oxygen species production resulting from impaired NADPH oxidase activity.30

Persistent, nonresolving inflammation is a hallmark of human diabetic foot ulcers and is one of the well-recognized underlying factors contributing to impaired healing in diabetic chronic wound.31,32 Increased apoptosis in diabetic wounds has been reported and correlates with unresolved inflammation in the diabetic wound environment.33

\textit{P. aeruginosa}'s T3SS effectors, ExoS, and ExoT are potent inducers of apoptosis in various cell types.15,18,19 Therefore, \textit{P. aeruginosa} colonization could perpetuate persistent inflammation in diabetic wounds by increasing apoptosis in diabetic wound environment. We are currently investigating the role of T3SS effector toxins in inflicting damage in diabetic wounds.

Figure 4. Histological analysis of normal and diabetic wounds infected with \textit{P. aeruginosa}. Skin wounds were harvested from day 10 wounds of normal and diabetic mice which were either treated with PBS (Mock) or infected with 1×10^6 wild-type \textit{P. aeruginosa} (PA103) or T3SS mutant PA103 pscJ-gentR (T3SS$^-$). (A) Wounds were fixed and stained with H&E. Wound edges are indicated by black arrows. (B) The corresponding tabulated number of leukocytes (per field of view) is shown as the mean ± SEM. (n = 18, 3 wounds per treatment and two fields of view assessed. *indicates significance with \(p < 0.05 \)). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Salicylidene acylhydrazides small molecules, INP0400, INP0401, and INP0402, have been successfully used to block T3SS-mediated secretion in a number of Gram-negative pathogens including Yersinia, Chlamydia, Shigella, and Salmonella species.34,35 Moreover, the plant auxin molecules indole-3-acetic-acid sodium salt, indole-3-butyric acid potassium salt, and 1-naphthalacetic acid potassium salt have been used to block T3SS expression and assembly in \textit{P. aeruginosa}.36 Finally, antibodies against the T3SS translocon components have also been used as immunotherapy to treat infections by various Gram-negative pathogens including \textit{P. aeruginosa}.37

Acknowledgments

Source of funding: This work was supported by National Institutes of Health grant R21 AI110685-01 (to S.H.S.), NIH R21NR013876-0 (to C.Z. and S.H.S.), and The Rush University Committee on Research, Young Investigator Award Fund #: 31184 (to S.H.S.).
Disclosure: The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest: None.

References

32. Wetzler C, Kampfer H, Stallmeyer B, Pfleischfeder J, Frank S. Large and sustained induction of chemokines during

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Supporting Information Figure S1. Determination of collagen deposition in normal and diabetic wounds infected with *P. aeruginosa*. Skin wounds were harvested from day 10 wounds of normal and diabetic mice, which were either treated with PBS (Mock) or infected with 1 × 10⁶ wild-type *P. aeruginosa* (PA103) or T3SS mutant PA103 pscJ-gentR (T3SS-). Wounds were fixed and stained with Sirius red stain. Polarized light microscopy was used to visualize the birefringence of early and late collagen fibers, thereby distinguishing type III fibers (green birefringence) from type I fibers (yellow–orange birefringence), respectively.