- 1. Given a continuous-tome signal x(t) with $X^F(\omega) = 0$ for $|\omega| > \omega_m$ determine the minimum sampling rate f_s for a signal y(t) defined by
 - (a) $x^2(t)$
 - (b) x(2t)
 - (c) $x(t)\cos(6\pi\omega_m t)$
- 2. (a) Find the period of the signal $f[k] = e^{j\frac{\pi}{16}k} \cos\left(\frac{\pi}{17}k\right)$.
 - (b) Find the energy and power of the signal $f[k] = (1.5)^k u[-k]$.
 - (c) For a DT system with input f[k] and output y[k], if $y[k] = f[k]\sin(\frac{\pi}{2}k)$, determine whether the system is *linear time invariant (LTI)* or not.
 - (d) Determine whether the system defined by $y[k] = f[k] * \cos(\frac{\pi}{8}k)$ BIBO stable or not.
- 3. (a) A system's response to x(n) is y(n) as the followings:

$$x(n) = (\frac{1}{2})^n u(n) - \frac{1}{4} (\frac{1}{2})^{n-1} u(n-1)$$
$$y(n) = (1/3)^n u(n)$$

- i. Determine the impulse response h(n) and the system function H(z) of a system that satisfies the above condition.
- ii. Find the difference equation that characterizes this system.
- iii. Determine if the system is stable.
- (b) Using the properties of Z-Transform, show that for a real x(n) that has a H(z), if a pole (zero) of H(z) occurs at $z = z_0$, then a pole (zero) must also occur at $z = z_0^*$.
- 4. Consider signal $x[n] = \{-1, 2, -3, 2, -1\}$ with discrete-time Fourier transform $X^{f}(\theta)$. Compute the following quantities:
 - (a) $X^{f}(0)$
 - (b) $\int_{-\infty}^{\infty} X^f(\theta) d\theta$
 - (c) $X^{f}(\pi)$
 - (d) $\int_{-\pi}^{\pi} |X^f(\theta)|^2 d\theta$

5. (a) Let x(n), n = 0, 1, ..., 7 be a purely imaginary sequence. The first five points of an eight-point DFT of this sequence are

 $\{j0.55, -0.055 + j0.1636, 0.3 + j0.15, 1.0450 + j1.4364, -j0.05\}.$

Determine the remaining three points and explain the basis of your answer.

- (b) Let y(n), n = 0, ..., N-1 be a complex sequence, whose N-point DFT is $Y(k) = \alpha_k$, k = 0, ..., N-1. Find an expression for the N-point DFT of the complex conjugate of y(n), in terms of $\alpha_0, ..., \alpha_{N-1}$.
- (c) We wish to obtain the spectrum of an analog signal whose bandwidth is 8 kHz, by first sampling the signal and then computing the DFT. For practical reasons, we have to use the minimum possible sampling frequency. If we desire a spectral resolution of at least 40 Hz, determine the minimum allowable duration of the analog signal record. Clearly explain how you arrive at your result.
- (d) A 7.5 kHz sinusoidal signal is sampled at the rate of 20 kHz, and 256 samples are used to compute the 512-point DFT X(k), k = 0, ..., 511. At which k would you expect to see a peak in X(k)? Explain the reasoning behind your answer.
- 6. Consider the single-pole digital filter given by

$$y(n) = Q_b[ay(n-1)] + x(n),$$

where x(n) and y(n) are the input and output respectively, a is the filter coefficient and $Q_b[\cdot]$ denotes the *b*-bit round-off operation in the digital-multiplier.

- (a) One simple way to analyze the effect of round-off noise is to represent the round-off operation by the *additive noise model* for quantization errors. State the key assumptions made in this model.
- (b) Using this model, derive a closed-form expression (in terms of a and b) for the variance of the error that will appear at the *output* of the filter. Clearly show how you arrive at the solution.
- 7. An AR(3) process is characterized by prediction coefficients: $a_3(1) = -1.25$, $a_3(2) = 1.25$, $a_3(3) = -1$
 - (a) Determine its lattice filter reflection coefficients.
 - (b) Determine its autocorrelation $r_{xx}(m)$ for $0 \le m \le 3$.
 - (c) Determine the mean-square prediction error.

8. Let $\{X(n)\}$ be a wide-sense real-valued stationary stochastic process with $E\{X(n)\} = 0$. Let $r(k) = E\{X(n)X(n-k)\}, k = 0, \pm 1, \pm 2, \ldots$ denote the autocorrelation function and $S(f) = \sum_{k=-\infty}^{\infty} r(k)e^{-j2\pi fk}$ the power spectral density (PSD) of the process. Let $X(0), X(1), \ldots, X(N-1)$ be an observed data record of the process $\{X(n)\}$. We wish to estimate the PSD function S(f) of $\{X(n)\}$ from the data record. The plot below shows a basic estimate of S(f) referred to as the periodogram and denoted as $I_N(f)$. Also the true S(f) is depicted.

- (a) Explain why $I_N(f)$ reveals such high oscillations. Quantify this in terms of the bias and variance of $I_N(f)$. Is $I_N(f)$ converging to S(f) as $N \to \infty$?
- (b) Introduce the concept of windowed periodogram estimates and explain why this class of estimates can converge to the true S(f). In particular, elaborate on the bias-variance trade-off characterizing this class of estimates. Give an example, e.g., Bartlett window, of the proper window function yielding a consistent estimate of S(f).
- (c) The following plot shows various estimates $\hat{S}_N(f)$ of S(f) based on N = 1024 data points. It is assumed that the data were generated from the following sinusoidal signal model

$$X(n) = A_1 e^{j(2\pi f_1 n + \theta_1)} + A_2 e^{j(2\pi f_2 n + \theta_2)} + w(n),$$

where $A_1, A_2, \theta_1, \theta_2$ are *iid* random variables uniformly distributed on $[0, 2\pi]$ and w(n) is a zero-mean, white noise process. Based on this plot can you estimate the values of the unknown frequencies f_1 and f_2 ?

