
THE UNIVERSITY OF MANITOBA

DATE Algorithms Candidacy Examination

Enter NAME and STUDENT NUMBER:

STUDENT NUMBER

WRITE NAME IN FULL ON THIS LINE

PRINT NAME IN FULL ON THIS LINE

Instructions: Attempt an answer each question as best you can. There are many questions so allocate

your time accordingly. It is generally impossible to answer all in completion so pace yourself and

answer as many as can.

Also this test requires to modular arithmetic calculators such as through Wolfram Alfa or a number

of other on-line resources.

Page 2

1) Questions of run time complexity for recursive algorithms. Where T(n) is run time
for problems of size n.

a) Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where c is a constant,

is Ω(n lg n) by appealing to a recursion tree.

b) Determine the Big-Oh complexity using visualization the following recurrence relations:

T(n) = T(n/2) + cn

T(n) = 2T(n/2) + cn

T(n) = T(n/2) + c

T(n) = 2T(n-1) + c

T(n) = T(n-1) + c

c) Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n - a) +

T(a) + cn, where a ≥ 1 and c > 0 are constants.

d) Determine the Big-Oh complexity using the Master Method the following recurrence relations:

T(n) = T(n/2) + cn

T(n) = 2T(n/2) + cn

T(n) = T(n/2) + c

T(n) = 2T(n-1) + c

T(n) = T(n-1) + c

Appendix 1): Master Method.

Bound a recurrence of the form:

T(n) = aT(n/b) + f(n) a ≥ 1 , b > 1

1. if f(n) = O(n
log

b
a-ε

), ε > 0 then T(n) = Θ(n
log

b
a
)

2. if f(n) = Θ(n
log

b
a
) then T(n) = Θ(n

log
b

a
log n)

3. if f(n) = Ω(n
log

b
a+ε

), ε > 0 and af(n/b) ≤ cf(n) for c < 1 then T(n) = Θ(f(n))

Page 3

2) General Algorithm Knowledge

a) Draw a map of “algorithm and problem world”. Include complexity classes and example of

problems as well as algorithms in those sets or classes. If possible provide the complexity of the

examples you use. Use the correct complexity notation. i.e. At the least used problem complexity

classes of P, NP, NPC and exponential.

b) What does the term NP mean in terms of a short certificate or being able to verify the solution?

(Not just its definition)

c) What does the term NPC mean in terms of polynomial time mapping or transformations?

d) You are working on a graph problem of unknown complexity. How would you establish it is in

NPC in terms of mappings?

e) Once established to be in the set of NPC problems, how would you go about trying to “solve” the

problem?

f) Using visualization solve the recurrence T(N)=4T(N/2) +N

Page 4

3) Randomization and probability.

a) Given a sporting event play-off with 16 teams. Teams are paired and play a best of seven series

(the first team to win 4 games, wins the series and no further games are played). The losing team is

eliminated and the winning team goes on to the next round. After 4 rounds there is only one team

remains as the overall winner.

What is the expected number of games that will be played in a play-off series? That is, how many

games does the tournament winner expect to play? The tournament winner is the team that wins all

4 of its series.

Provide a Monte Carlo solution to the problem. That is, provide a pseudo-code algorithm and any

other justification, comments or arguments that you would like to add.

b)Consider Quicksort

QUICKSORT(A, p, r)

1 if p < r

2 then q ← PARTITION(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

The key to the algorithm is the PARTITION procedure, which rearranges the subarray A[p…r] in

place.

PARTITION(A, p, r)

1 x ← A[r]

2 i ← p - 1

3 for j ← p to r - 1

4 do if A[j] ≤ x

5 then i ← i + 1

6 exchange A[i] ↔ A[j]

7 exchange A[i + 1] ↔ A[r]

8 return i + 1

Argue why the complexity of Quicksort is typically considered O(nlgn), while the worst case is

O(n
2
). Determine the complexity (solve the T(n) recurrance) of the algorithm provided, for corner

cases of best and worst case partitions.

How can randomization prevent the worst case from ever occurring with vanishingly small

probability? Hint: The answer has to do with selection of the partition element.

Page 5

4) Data Structures

a) Discuss advantages and disadvantages of using arrays or linked lists in term of operations of

insertion, deletion and searching. Consider the case of sorted data.

For the binary tree below, provide an example of output from a depth first traversal and breath first

traversal.

b) Given that it is better to use a hash function depends on all of the bits for the key, which hash

function is better and why?

h(k) = k mod 8 or h(k) = k mod 7. .

c) Given a graph:

Provide an adjacency list representation of the graph as well as adjacency matrix representation of

the graph.

Demonstrate a Breath First Search for the graph above for finding the shortest path from node 3 to

node 1.

Page 6

5) Max-Flow: The Ford-Fulkerson method for finding maximum flow is iterative. We start with

f(u, v) = 0 for all u, v  V, giving an initial flow of value 0. At each iteration, we increase the flow

value by finding an "augmenting path," which we can think of simply as a path from the source s to

the sink t along which we can send more flow, and then augmenting the flow along this path. We

repeat this process until no augmenting path can be found.

FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p

3 do augment flow f along p

4 return f

For the graph below a flow is shown along the bold (dark) lines. Form this point forward complete

the method to obtain maximal flow. Hint: Create a residual network and then BFS search can be

employed to find an augmenting path. Capacity along an edge on a residual network is estimated as

follows: cf(u,v)=c(u,v)-f(u,v).

Page 7

6) Number theory question:
 Generating a large number that is probably prime.

Given that you want to generate a probably prime 200 digit number N, with an uncertainty of 1 part

in 2
50

.

Assume that composites numbers are detected using base-a pseudo-prime tests (Miller-Rabin tests).

We want to know how many modular exponentiation computations (base-a pseudo-prime tests) of

the type a
n-1

=1 modn will be performed on average before a prime with the required certainty is

found. Composites are eliminated if a
n-1

!=1.

Hints:

i) The number of prime numbers up to N is approximately N/lnN.

ii) If the probability of an event (success) is p, the expected number of trials until a success is 1/p.

a) The probability of a 200 digit number (picked at random) being prime is ____, (calculated from

the density of prime numbers). What is the Expected number of trials before successfully selecting

a prime at random?

b) If the pseudo-primality test has a probability of 3/4 of eliminating composites from the search

for each iteration within the Miller-Rabin test, what is the number of Expected number of iterations

(of the type a
n-1

=1 modn) required to eliminate a composite from contention as a prime?

c) Once a number is generated that is very likely prime, how many iterations of the Miller-Rabin

pseudo primality test are required to be almost certain (1-1/2
50

) that the number selected is almost

certainly prime?

d) Put that all together. What is the Expected number of computations of the type a
n-1

=1 modn

before a 200 digit very likely prime number is generated?

e) Assume someone discovered a polynomial time deterministic algorithm O(log
11

n), which they

have. How does it compare to the above result of the time it took to generate a big prime using a

pseudorandom algorithm that is probabilistic?

Page 8

7) RSA type question:
Your friend selects 11 and 17 as p and q for their RSA encryption implementation.

a) In general p and q (two large primes are selected), maybe of 100 and 120 decimals.

n = p.q (this is the unique prime factors for n). Generate n.

b) Select a small odd integer e relatively prime to ø(n), i.e. to (p-1)*(q-1). (use gcd)

Euclid(a,b)

if b = 0 then return a

else return Euclid(b, a mod b)

Alternatively, between e= 7 or 11, which is a better choice for e?

Compute d as the multiplicative increase of e, modulo ø(n), d exists, easy to compute using the

extended_euclid and modular equation solver.

Modular_linear_equation_solver (a, b, n) (Trying to solve ax = b (mod n))

(d, x', y') <= Extended_Euclid (a, n)

if d | b then x0 <= x'(b/d) mod n

for i = 0 to d-1 print (x0 + i(n/d)) mod n

else

print (no solutions) because d did not divide b

Alternatively, verify which of the following would be d provided e=7.

c) P = (e, n) as the friends public key. S = (d, n) as the friend’s secret key.

The message you want to send is “Hello” encoded as 48 65 6C 6C 6F in hex or 72 101 108 108 111

in decimal.

Symbolically, demonstrate how you would encrypt such a big number and send it to your friend.

Encode the H in Hello.

d) Similarly, symbolically, demonstrate how the recipient of such an important message would

decrypt the message. Decode the first symbol.

Extended-Euclid(a, b)

if b = 0 then return (a, 1, 0)

(d', x', y')  Extended-Euclid(b, a mod b)

(d, x, y)  (d', y', x' - a / b y')

return (d, x, y)

Page 9

8) Diffie Hellman:
You want to get the code 101 to your friend so that they can decode a message using a secret key

algorithm. You decide to use Diffie Hellman. You and you friend agree to use 17 as the big prime p,

and 3 as g, a generator for Z*17.

You pick a as your secret and calculate g
a
modp =A

Your friend picks b as their secret and calculates g
b

modp =B

You send your friend A, and they send you B.

You calculate B
a
modp

Your friend calculates A
b

modp

a) Are these two equal? If so they represent the shared secret K.

b) How do you use K to get the code 101 to your friend?

Page 10

9) Monte Carlo Question:
 Using the following 15 pairs of random number between 0 and 99999 and the image

below calculate . (assume r=1) (from “A million Random Digits”)(Normalize as required)

Describe your method in a readable pseudo-code or clear paragraph.

What is the estimate of , when you also use these 15 random number pairs? (from
random.org)

 x y
38484 79938
40719 73052
20779 8438
82213 18481
43151 48517
39667 28343
42187 6989
46297 34392
81222 92435
7661 16363
92054 97838
65137 17749
18243 8098
51066 12035
97255 67682

Hint: Pythagoras Theorem a
2
+b

2
=c

2
and area of a circle is r2

x y

Page 11

10) Complexity:

a) If a problem is (n), does it imply that it can be solved with an algorithm that is O(n)? Yes or

No.

 Provide an example

b) If a problem is (n
2
), does it imply that it can not be solved with an algorithm that is O(n)? Yes

or No.

c) If a problem is in an element of the set NP, does it imply that it can be solved with a polynomial

time algorithm? Yes or No.

d) If a problem is in an element of the set NP, does it imply that a solution can be checked or

verified with a polynomial time algorithm? Yes or No.

e) If an algorithmic problem is an element of the set NPC, and you can transform your algorithmic

problem to it with a polynomial time mapping or reduction, have you now proven that your

algorithmic problem is an element of NPC? Yes or No.

(Assume your algorithmic problem can be checked in polynomial time.) Draw a picture.

f) How would you establish that an algorithmic problem is an element of the set of problems that are

NPC?

Page 12

11) An Alternative

In the event these questions were not specifically studied for. Present a problem and your solution

below.

