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Instructions: Attempt an answer each question as best you can. There are many questions so allocate 

your time accordingly. It is generally impossible to answer all in completion so pace yourself and 

answer as many as can. 

 

Also this test requires to modular arithmetic calculators such as through Wolfram Alfa or a number 

of other on-line resources. 
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1) Questions of run time complexity for recursive algorithms. Where T(n) is run time 
for problems of size n. 
 
a) Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where c is a constant,  

is Ω(n lg n) by appealing to a recursion tree. 

 

b) Determine the Big-Oh complexity using visualization the following recurrence relations: 

T(n) = T(n/2) + cn 

T(n) = 2T(n/2) + cn 

T(n) = T(n/2) + c 

T(n) = 2T(n-1) + c 

T(n) = T(n-1) + c 

 

c) Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n - a) +  

T(a) + cn, where a ≥ 1 and c > 0 are constants. 

 

d) Determine the Big-Oh complexity using the Master Method the following recurrence relations: 

 

T(n) = T(n/2) + cn 

T(n) = 2T(n/2) + cn 

T(n) = T(n/2) + c 

T(n) = 2T(n-1) + c 

T(n) = T(n-1) + c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1):   Master Method. 

Bound a recurrence of the form: 

T(n) = aT(n/b) + f(n)     a ≥ 1 ,   b > 1 

1. if  f(n) = O(n
log

b
a-ε

), ε > 0 then  T(n) = Θ(n
log

b
a
)  

2. if  f(n) = Θ(n
log

b
a
) then  T(n) = Θ(n

log
b

a
log n)  

3. if  f(n) = Ω(n
log

b
a+ε

), ε > 0 and af(n/b) ≤ cf(n) for c < 1 then  T(n) = Θ(f(n)) 
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2) General Algorithm Knowledge 
 
a) Draw a map of “algorithm and problem world”. Include complexity classes and example of 

problems as well as algorithms in those sets or classes. If possible provide the complexity of the 

examples you use. Use the correct complexity notation. i.e. At the least used problem complexity 

classes of P, NP, NPC and exponential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) What does the term NP mean in terms of a short certificate or being able to verify the solution? 

(Not just its definition) 

 

 

 

 

 

c) What does the term NPC mean in terms of polynomial time mapping or transformations? 

 

 

 

 

 

d) You are working on a graph problem of unknown complexity. How would you establish it is in 

NPC in terms of mappings?  

 

 

 

 

 

e) Once established to be in the set of NPC problems, how would you go about trying to “solve” the 

problem? 

 

 

 

 

 

f) Using visualization solve the recurrence T(N)=4T(N/2) +N 
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3) Randomization and probability. 
 
a) Given a sporting event play-off with 16 teams. Teams are paired and play a best of seven series 

(the first team to win 4 games, wins the series and no further games are played). The losing team is 

eliminated and the winning team goes on to the next round. After 4 rounds there is only one team 

remains as the overall winner. 

 

What is the expected number of games that will be played in a play-off series? That is, how many 

games does the tournament winner expect to play? The tournament winner is the team that wins all 

4 of its series. 

 

 

 

 

Provide a Monte Carlo solution to the problem. That is, provide a pseudo-code algorithm and any 

other justification, comments or arguments that you would like to add. 

 

 

 

 

 

 

 

 

b)Consider Quicksort 

 

QUICKSORT(A, p, r)  

1 if p < r 

2    then q ← PARTITION(A, p, r)  

3         QUICKSORT(A, p, q - 1)  

4         QUICKSORT(A, q + 1, r)  

 

To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).  

 

The key to the algorithm is the PARTITION procedure, which rearranges the subarray A[p…r] in 

place.  

 

PARTITION(A, p, r)  

1  x ← A[r]  

2  i ← p - 1  

3  for j ← p to r - 1  

4       do if A[j] ≤ x 

5             then i ← i + 1  

6                  exchange A[i] ↔ A[j]  

7  exchange A[i + 1] ↔ A[r]  

8  return i + 1 

 

Argue why the complexity of Quicksort is typically considered O(nlgn), while the worst case is 

O(n
2
). Determine the complexity (solve the T(n) recurrance) of the algorithm provided, for corner 

cases of best and worst case partitions. 

 

 

 

 

 

 

 

How can randomization prevent the worst case from ever occurring with vanishingly small 

probability? Hint: The answer has to do with selection of the partition element.  
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4) Data Structures  
 
a) Discuss advantages and disadvantages of using arrays or linked lists in term of operations of 

insertion, deletion and searching. Consider the case of sorted data. 

 

 

 

 

 

For the binary tree below, provide an example of output from a depth first traversal and breath first 

traversal. 

 

 
 

 

b) Given that it is better to use a hash function depends on all of the bits for the key, which hash 

function is better and why?  

h(k) = k mod 8 or h(k) = k mod 7.  .   

 

 

c) Given a graph: 

 
Provide an adjacency list representation of the graph as well as adjacency matrix representation of 

the graph. 

 

Demonstrate a Breath First Search for the graph above for finding the shortest path from node 3 to 

node 1. 
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5) Max-Flow: The Ford-Fulkerson method for finding maximum flow is iterative. We start with 

f(u, v) = 0 for all u, v  V, giving an initial flow of value 0. At each iteration, we increase the flow 

value by finding an "augmenting path," which we can think of simply as a path from the source s to 

the sink t along which we can send more flow, and then augmenting the flow along this path. We 

repeat  this process until no augmenting path can be found. 

 

FORD-FULKERSON-METHOD(G, s, t)  

1  initialize flow f to 0  

2  while there exists an augmenting path p 

3      do augment flow f along p 

4  return f 

 

For the graph below a flow is shown along the bold (dark) lines. Form this point forward complete 

the method to obtain maximal flow. Hint: Create a residual network and then BFS search can be 

employed to find an augmenting path. Capacity along an edge on a residual network is estimated as 

follows: cf(u,v)=c(u,v)-f(u,v). 
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6) Number theory question:  
 Generating a large number that is probably prime.  

Given that you want to generate a probably prime 200 digit number N, with an uncertainty of 1 part 

in 2
50

.  

 

Assume that composites numbers are detected using base-a pseudo-prime tests (Miller-Rabin tests). 

We want to know how many modular exponentiation computations (base-a pseudo-prime tests) of 

the type a
n-1

=1 modn will be performed on average before a prime with the required certainty is 

found. Composites are eliminated if a
n-1

!=1. 

  

Hints: 

i)  The number of prime numbers up to N is approximately N/lnN. 

ii) If the probability of an event (success) is p, the expected number of trials until a success is 1/p. 

 

a) The probability of a 200 digit number (picked at random) being prime is ____, (calculated from 

the density of prime numbers). What is the Expected number of trials before successfully selecting 

a prime at random? 

 

 

 

 

b) If the pseudo-primality test has a probability of 3/4 of eliminating composites from the search 

for each iteration within the Miller-Rabin test, what is the number of Expected number of iterations 

(of the type a
n-1

=1 modn) required to eliminate a composite from contention as a prime? 

 

 

 

c) Once a number is generated that is very likely prime, how many iterations of the Miller-Rabin 

pseudo primality test are required to be almost certain (1-1/2
50

) that the number selected is almost 

certainly prime? 

 

 

 

d) Put that all together. What is the Expected number of computations of the type a
n-1

=1 modn 

before a 200 digit very likely prime number is generated? 

 

 

 

 

e) Assume someone discovered a polynomial time deterministic algorithm O(log
11

n), which they 

have. How does it compare to the above result of the time it took to generate a big prime using a 

pseudorandom algorithm that is probabilistic? 
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7) RSA type question:  
Your friend selects 11 and 17 as p and q for their RSA encryption implementation. 

 

a) In general p and q (two large primes are selected), maybe of 100 and 120 decimals. 

n = p.q (this is the unique prime factors for n). Generate n. 

 

 

 

b) Select a small odd integer e relatively prime to ø(n), i.e. to (p-1)*(q-1). (use gcd) 

Euclid(a,b) 

if b = 0 then return a 

else return Euclid(b, a mod b) 

Alternatively, between e= 7 or 11, which is a better choice for e? 

 

 

 

Compute d as the multiplicative increase of e, modulo ø(n), d exists, easy to compute using the 

extended_euclid and modular equation solver. 

Modular_linear_equation_solver (a, b, n) (Trying to solve ax = b (mod n)) 

(d, x', y') <= Extended_Euclid (a, n) 

if d | b then x0  <=  x'(b/d) mod n 

for i = 0 to d-1 print (x0 + i(n/d)) mod n 

else 

print ( no solutions) because d did not divide b 

 

Alternatively, verify which of the following would be d provided e=7. 

 

 

 

c) P = (e, n) as the friends public key.   S = (d, n) as the friend’s secret key. 

 

The message you want to send is “Hello” encoded as 48 65 6C 6C 6F in hex or 72 101 108 108 111 

in decimal.   

Symbolically, demonstrate how you would encrypt such a big number and send it to your friend. 

Encode the H in Hello. 

 

 

d) Similarly, symbolically, demonstrate how the recipient of such an important message would 

decrypt the message. Decode the first symbol. 

 

 
 

 
 
 
 
 
 
 
 
 
 
  

Extended-Euclid(a, b) 

if b = 0 then return (a, 1, 0) 

(d', x', y')  Extended-Euclid(b, a mod b) 

(d, x, y)  (d', y', x' - a / b y') 

return ( d, x, y) 
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8) Diffie Hellman:  
You want to get the code 101 to your friend so that they can decode a message using a secret key 

algorithm. You decide to use Diffie Hellman. You and you friend agree to use 17 as the big prime p, 

and 3 as g, a generator for Z*17.  

 

You pick a as your secret and calculate g
a 
modp =A 

 

  

 

 

Your friend picks b as their secret and calculates g
b 

modp =B 

 

 

 

You send your friend A, and they send you B. 

 

 

 

 

You calculate B
a 
modp 

 

 

 

 

Your friend calculates A
b 

modp 

 

 

 

a) Are these two equal?     If so they represent the shared secret K. 

 

 

 

 

 

 

b) How do you use K to get the code 101 to your friend? 
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9) Monte Carlo Question: 
 Using the following 15 pairs of random number between 0 and 99999 and the image 

below calculate . (assume r=1) (from “A million Random Digits”)(Normalize as required) 
 
Describe your method in a readable pseudo-code or clear paragraph. 

 

 
 

 
 
 

What is the estimate of , when you also use these 15 random number pairs? (from 
random.org) 
 
   x                 y 
38484 79938 
40719 73052 
20779 8438 
82213 18481 
43151 48517 
39667 28343 
42187 6989 
46297 34392 
81222 92435 
7661 16363 
92054 97838 
65137 17749 
18243 8098 
51066 12035 
97255 67682 
 

Hint: Pythagoras Theorem a
2
+b

2
=c

2  
and area of a circle is  r2

 

 
 
 
 
 
  

x         y 
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10) Complexity:  
 

a) If a problem is (n), does it imply that it can be solved with an algorithm that is O(n)? Yes or 

No. 

 Provide an example 

 

 

b) If a problem is (n
2
), does it imply that it can not be solved with an algorithm that is O(n)? Yes 

or No. 

 

 

c) If a problem is in an element of the set NP, does it imply that it can be solved with a polynomial 

time algorithm? Yes  or  No. 

 

 

d) If a problem is in an element of the set NP, does it imply that a solution can be checked or 

verified with a  polynomial time algorithm? Yes  or  No. 

 

 

e) If an algorithmic problem is an element of the set NPC, and you can transform your algorithmic 

problem to it with a polynomial time mapping or reduction, have you now proven that your 

algorithmic problem is an element of NPC?  Yes or  No. 

(Assume your algorithmic problem can be checked in polynomial time.) Draw a picture. 

 

 

 

 

 

f) How would you establish that an algorithmic problem is an element of the set of problems that are 

NPC? 
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11) An Alternative  
 
In the event these questions were not specifically studied for. Present a problem and your solution 

below. 

 


