Strong wind events in Iqaluit: model and observation

REBEKAH MARTIN¹ JOHN HANESIAK¹ AYRTON ZADRA² RON GOODSON³ ¹University of Manitoba, ²RPN-A, ³Environment Canada

Outline

- Motivation
- General synoptics of the northeasterly
- Model output and comparison
- Summary and conclusions

Motivation

- Northeasterly winds at YFB are rare, but when they occur they're strong
- What causes the wind to shift from NW to NE?
- In general the GEM LAM can have difficulties getting the strong winds to the surface (downslope flow)

February 4, 2007 blizzard

A significant severe weather event in February 2007 was a northeasterly storm.

Video from youtube: http:// www.youtube.com/ watch?v=csOa-ws3c8c

Winds gusted to 130 km/h

Synoptic Overview

- Looking at 4 cases:
 - 12Z 4 February 2007
 - 0 OZ 17 November 2008

 - 0 12Z 20 September 2008
- In general a pressure gradient is set up along Frobisher Bay and strong downslope winds occur off the Hall Peninsula

Topography and Model Area Peninsula bisher Bay

Surface Feb 2007

12Z 4 Feb

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

18Z 4 Feb

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Heating over Frobisher Bay

oZ 5 Feb

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Time of maximum observed winds

Cross Section oZ 5 Feb

Cross section over Iqaluit

Winds (shaded, kts)

Potential temperature (contour, K)

Wind direction

5Z 5 Feb

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Time of maximum model winds

Cross Section 5Z 5 Feb

Cross section over Iqaluit

Winds (shaded, kts)

Potential temperature (contour, K)

Wind direction

Surface Nov 2008

oZ 17 Nov

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Wind shift starts at some model points

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Time of observed wind shift

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector Maximum model winds

Cross section 12Z 17 Nov

Wind speed (shaded, kts)

Vertical velocity (contour, hPa s⁻¹)

Wind direction

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Observed wind shift back to NW

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Cross section 21Z 17 Nov

Wind speed (shaded, kts)

Vertical velocity (contour, hPa s⁻¹)

Wind direction

0Z 18 Nov

Eta = 1.0

Potential temperature (shaded, K)

Sea level pressure (contour, 2hPa)

Wind vector

Winds NW again at end of simulation

Surface September 2008

Surface Oct 2008

Case Summary				
	Feb 2007	Nov 2008	Oct 2008	Sept 2008
Max Wind (obs)	33 ms⁻¹ 0Z 5 Feb	24 ms ⁻¹ 15Z 17 Nov	13 ms ⁻¹ 21Z 2 Oct	17 ms ⁻¹ 19 Z 20 Sept
Max wind (model)	24 ms ⁻¹ 4Z 5 Feb	11 ms ⁻¹ 13Z 17 Nov	13 ms ⁻¹ 21Z 2 Oct	13 ms ⁻¹ 22Z 20 Sept
Direction	NE with NW swings	NW -> NE -> NW	E -> NE	NE -> NW
Shift Time	18Z-21Z, 4 Feb 6Z-9Z, 5 Feb	6Z-8Z 17 Nov 19Z-20Z	2Z-4Z, 2 Oct	2Z, 21 Sept
Temp Trend	Increasing	Increasing with NE	Increasing	Increasing

Conclusion

- There is a definite 'regime change' from NW to NE marked by
 - Rising temperatures
 - NE or E winds throughout the troposphere
- Heat fluxes over Frobisher Bay?
- Some sensitivity studies to study physics
- Difficulties arise when
 - Winds don't reach the surface (surface roughness?)
 - Winds may be positioned a little off to the east of YFB
 - The jump may move north of YFB earlier than it should