

Blowing Snow Studies at Iqaluit Airport

Mark Gordon², Sumita Biswas¹, and Peter Taylor¹

Dept. of Earth and Space Science and Engineering, York University

² Dept. of Geography, Trent University

Summary

170 Days of Data (Oct. 23 to Apr. 10)

- Max Wind Speed, $U_{10} = 18.2 \text{ ms}^{-1} (65 \text{ km h}^{-1})$
- Temperatures between $0 < T_a < -40$ C

Results (In Progress):

- Threshold Wind Speeds
- Electric Field Strength
- Particle Size Measurements
- Mass Flux Measurements
- Visibility and Particle Number Flux
- Surface Roughness near 0.06 m

Variation with T_a and Rh

To Compare with Models

120 – 150 μm at 0.35 m Linear Variation with Wind Speed

Constant Exponent γ

Model with $d \approx 109 \ \mu m (at 2 m)$

Increase with Wind Speed

16/15