Storm Studies in the Arctic (STAR)

A CFCAS Network

John Hanesiak

1st Annual STAR Workshop NRC, Ottawa, ON Nov. 17, 2006

http://www.starnetwork.ca/

Outline

- Planned research
- Importance & Theme contributions
- How it will be conducted
- Logistics and equipment
- Timeline

Planned Research

- Depends somewhat on PhD student's interest!
- Examination of GEM and/or GEM-LAM performance
 - Collaboration with Bob K and Ron G
 - Identify fields that are simulated well and not so well
 - Several events/cases
 - Using special STAR measurements
 - 3-D thermodynamic and dynamical attributes (possibly microphysical)
 - Model experiments to diagnose problem areas in more detail and examine some of these physically
- Data assimilation
 - George Liu in collaboration with Sylvie Gravel
 - use STAR measurements within model 3D-VAR/4D-VAR environment (where possible) to examine the effects on simulations
 - Compare control run to experimental simulations
 - Characterization of storm events
 - Combine special datasets to obtain detailed 3D and 4D structure of storms and their surface impacts
 - Inter-comparison of various storms (internal structure & surface impacts
 - Will suggest why storms are different in a variety of ways
 - Detailed examination of a case study (winds & precip)

Importance & Theme Contributions

- Modeling:
 - Identify model deficiencies & good points (Theme 3)
 - Better understanding of physics (Theme 1 & 2)
 - Contribute to model improvements (Theme 3)
 - Overall goal is to improve prediction capabilities
- Storm Characterization:
 - Improved understanding of storm structure and evolution (Theme 1 & 2)
 - Surface impacts (Theme 1 & 2)

How it will be Conducted

- Field measurements:
 - 3-4 people in the field
 - Local and regional surface meteorology (mesonets and Iqaluit data)
 - Rawinsonde and surface remote sensing data (radiometers, sodar, Doppler radar)
 - Aircraft data & airborne Doppler radar
- Processing and analysis of data
- Compare with model data
- Apply field data to data assimilation

Logistics and equipment

- Microwave radiometers (2), sodar, mesonet, visibility sensors, laser precipitation sensor, rawinsondes
- Students (2) and George will maintain instruments & conduct sonde launches ... can assist elsewhere as well
- How best to ship instruments? Timing of this? Where do we store them?
- Where to deploy instruments?
- Power sources? Enough power at these sources? How do we cover the cost of this?
- Helium shipment (where do we get this and when to ship?)
- Deployment of mesonet (helicopter issues)
- Modeling activity logistics (can George do simulations remotely and how best to organize this so we do not over-subscribe computing resources?)

Timeline

- Winter 2006:
 - Purchase & test remaining equipment (mesonets, sondes)
 - Licensing
 - Sighting plans
- Spring 2007
 - Ship some equipment/hardware to save on costs
 - Licensing and sighting
 - Other field logistics (plan timing of personnel, etc)
- Summer 2007
 - Installation of mesonet and other hardware that may be difficult to install in colder conditions
- Fall 2007
 - Begin field campaign

