

University of Manitoba

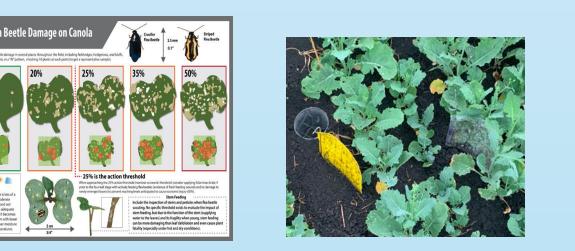
Can Fall Rye Cover Crop Protect Canola from Flea Beetle Damage?

Aleksandar Zashev⁺, Yvonne Lawley[§], and Alejandro C Costamagna⁺

Department of Entomology⁺ and Department of Plant Science[§] University of Manitoba, Winnipeg, Manitoba

Introduction

Hungry overwintered adults congregate in the fields with newly emerged canola seedlings where they can cause devastating damage

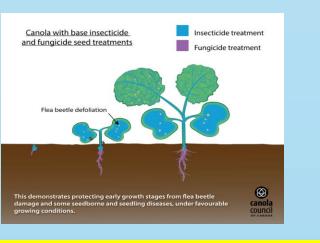

Overwintering adults Adults emerge and	feed on seedlings		Pupation Ac	lults emerge			
4	Larva	e (larvae)		Adults	feed and go to overwinte	ering sites	
Egg laying		Overwint	Overwintering adults die off				
April	May	June	July	August	September	October	
	Greatest dar	nage					

	Egg laying	(current)	ering adults die off		feed and go to overwint	
pril	May	June	July	August	September	October
	Greatest dam	age				

Treatments 2022

t1 Rye terminated 7 DBP (7 days before planting canola) @70 t2 Rye terminated 1 DAP (1 day after planting canola) @1dap t3 Rye terminated at 2-leaf stage of canola @2leaf t4 Control - No fall rye cover crop @control

'dbpc	Treatment 1 401	Treatment 2 402	Treatment 5 Control 403	Treatment 3 404	Treatment 4 405	8m	
рс						2m	
	Treatment 3 301	Treatment 2 302	Treatment 5 Control 303	Treatment 4 304	Treatment 1 305	8m	
				_		2m	;
	Treatment 4 201	Treatment 3 202	Treatment 1 203	Treatment 5 Control 204	Treatment 2 205	8m	
		-	-	-		2m	


Methods

Treatments 2023

t1 Rye terminated 7 DBP (7 days before planting canola) @7dbpc

- t2 Rye terminated 1 DAP (1 day after planting canola) @1dapc
- t3 Rye terminated at cotyledon stage of canola @cot t4 Rye terminated at 2-leaf stage of canola @2leaf t5 Control - No fall rye cover crop @control

Current control depends on insecticides as a seed treatment and follow-up foliar application when needed

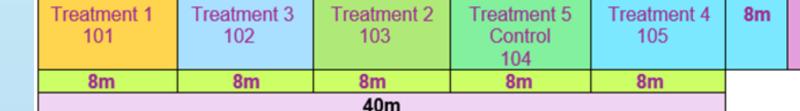
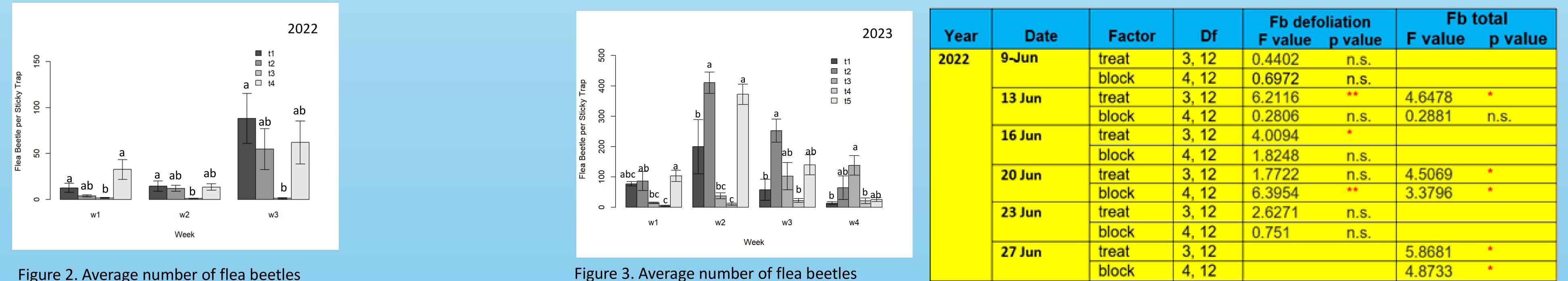


Figure 1. Map of plots with 5 treatments replicated in RCBD (n = 4) in Carman, Manitoba, during 2023

Statistical Analyses (preliminary)

- Variables: defoliation, abundance of flea beetles and yield
- Separate analyses of variance (ANOVA) per date
- Treatments and blocks will be treated as fixed factors,
- Pairwise comparisons of treatments with Tukey's HSD

Experimental design


- Roundup ready Canola (DEKALB DKTF 97 CRSC)
- Rye cover crop AC[®] Hazlet variety
- Plant stand levels (7.5-inch row spacing for Canola and Fall Rye)
- Canola seed treatment (BUTEO start 480 FS + Prosperevergol + Fortenza[®] Advanced)
- Planting date of Canola (27 May 2022, 10 May 2023)
- Collecting data period (every week after 50 % emerging of cotyledons until ≤ 4 leaf stage)

Flea Beetles abundance: weekly

• 1 yellow sticky trap / plot

Canola defoliation

- 2 transects per plot, 10 plants assessed visually for defoliation • transect
- Plant population assessed weekly

Results

Figure 2. Average number of flea beetles captured / yellow sticky traps each week (w1 = June 13, w2 = June 20, w3 = June 27)

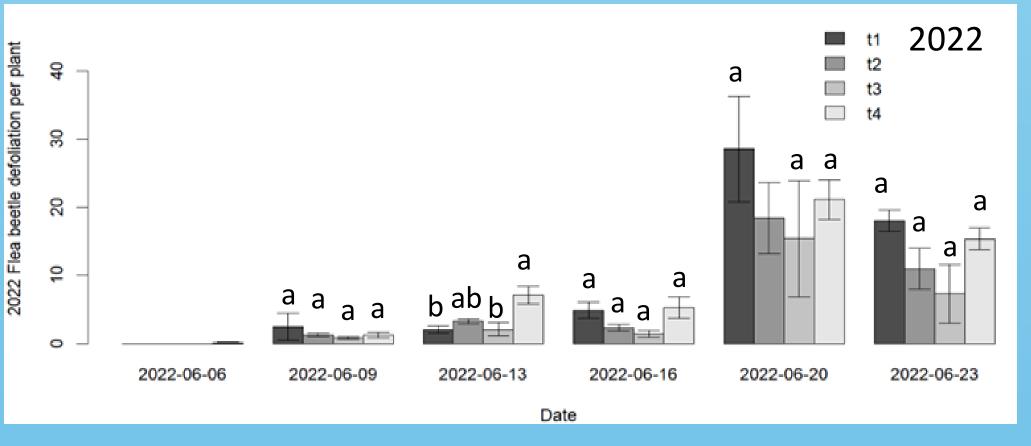


Figure 4. Average defoliation per plant calculated by mean defoliation per cotyledons and first 2 true leaves in 2022 captured / yellow sticky traps each week (w1 = June 2, w2 = June 9, w3 = June 15, w4 = June 23)

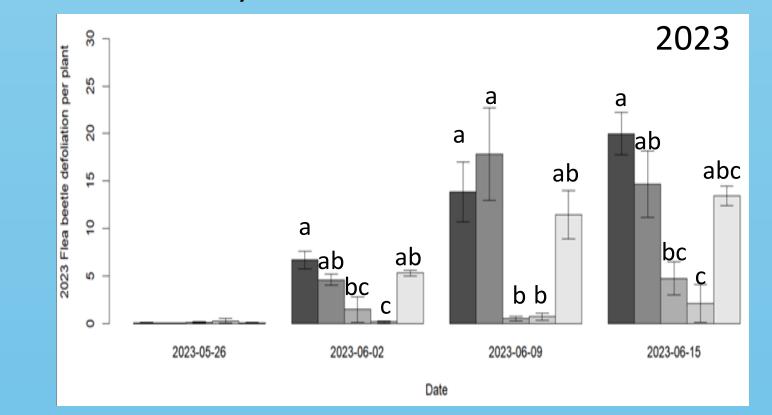
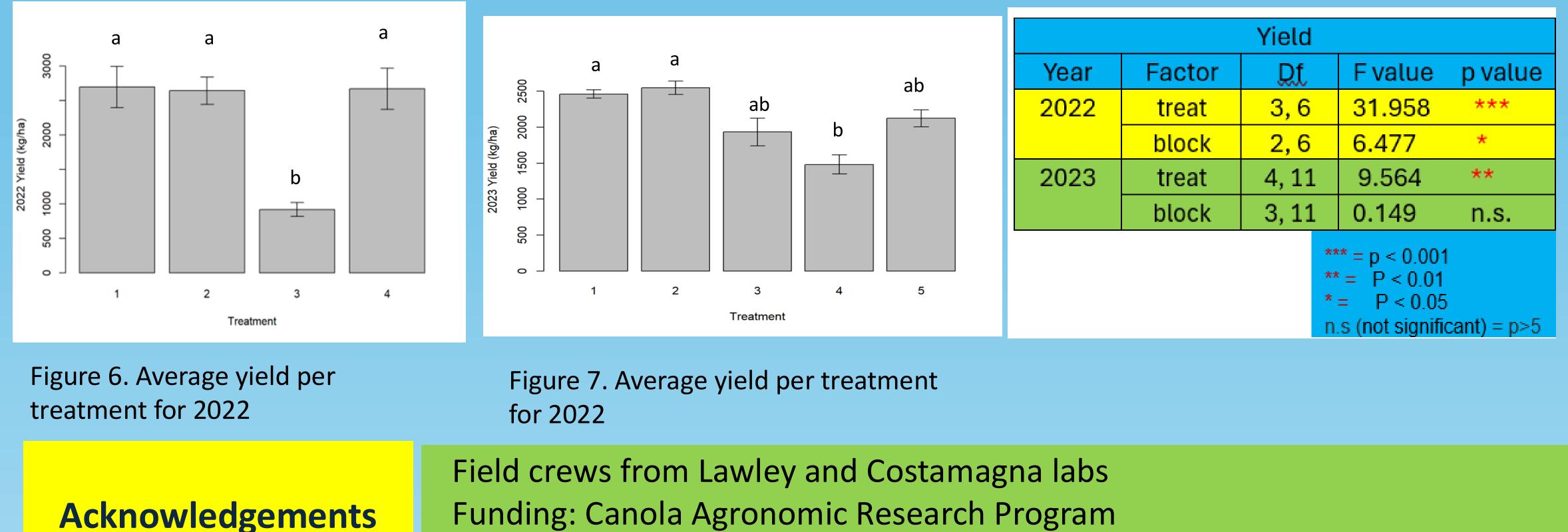



Figure 5. Average defoliation per plant calculated by mean defoliation per cotyledons and first 2 true leaves in 2023

		block	4, 12	6.3954		3.3796	
	23 Jun	treat	3, 12	2.6271	n.s.		
		block	4, 12	0.751	n.s.		
	27 Jun	treat	3, 12			5.8681	*
		block	4, 12			4.8733	*
023	2 Jun	treat	4. 12	11.4351	***	8.0039	**
		block	3, 12	0.7312	n.s.	1.588	n.s.
	9 Jun	treat	4. 12	10.5574	***	51.1856	***
		block	3, 12	2.8619	n.s.	3.5207	*
	15 Jun	treat	4. 12	9.3547	**	6.7991	**
		block	3, 12	0.3277	n.s.	1.0137	n.s.
	23 Jun	treat	4. 12			4.7472	*
		block	3, 12			0.806	n.s.

*** = p < 0.001
** = P < 0.01
* = P < 0.05
n.s. (not significant) = p>5

- In 2022, rye terminated at the 2nd leaf stage (T3) showed lower number of flea beetles (Figure 3) and less defoliation (Figure 4), but also less yield (Figure 6)
- Similarly, in 2023, rye terminated at the cotyledon (T3) and 2nd leaf stage (T4) showed lower number of flea beetles (Figure 4) and less defoliation (Figure 5), but also less yield (Figure 7)
- Plant density was not affected by treatments in either year (data not shown).

	Yield						
ab	Year	Factor	<u>D</u> f	F value	p value		
	2022	treat	3,6	31.958	***		

- A fall rye cover crop can protect canola from flea beetle's damage when overlaps with canola (T3 and T4).
- However, overlapping with canola resulted in big yield penalties when extended to the 2nd leaf. Lower yield reduction was observed in the treatment with rye terminated at the cotyledon stage.
 - Future work should focus on 1) finding the sweet spot for terminating fall rye, and 2) finding cover crops that can protect the canola from flea beetles and not reduce the yield.