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Introduction Objectives
Challenges in BMPs Development
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Limited Data Availability

ICIency. ' Precision Measurements

Often Destructive

Economic

Non-Destructive Monitoring Develop structural remote sensing indices to capture pea

growth and development over time.
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Limited Scalability L Temporal Growth Insights 4

Determine the optimal time for crop growth stages to best
predict crop yield from remote sensing data.
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Cost and Labor Efficiency

Environmental Variability
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Conclusion

B i R*=0.82 RMSE =7.07

« This study demonstrates the effectiveness of LIDAR technology iIn

. evaluating best management practices (BMPs) for field pea.

* Preliminary results indicate that LIDAR can effectively distinguish
between different BMPs, offering data-driven recommendations for
optimizing seeding rates and sowing times.

SeE I natme  These findings contribute to precision agriculture by enhancing crop

yield and sustainability.
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