Instructor:
Dr. Francis Zvomuya
Email: francis.zvomuya@umanitoba.ca

Tutor: TBD
Email: TBD

Marker: TBD
Email: TBD
Office: TBD

Academic Integrity
Plagiarism or any other form of cheating in examinations, term tests or academic work is subject to serious academic penalty. A student found guilty of contributing to cheating in examinations or term assignments is also subject to serious academic penalty. Students should acquaint themselves with the University’s policy on academic integrity (http://umanitoba.ca/academicintegrity/).
Course outline

<table>
<thead>
<tr>
<th>Topic</th>
<th># lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Principles of scientific experimentation and checklist for design and analysis of experiments.</td>
<td>1</td>
</tr>
<tr>
<td>2. Populations, sampling, distributions, probability, notation, ttests, power of tests</td>
<td>6</td>
</tr>
<tr>
<td>3. Linear regression, analysis of variance, assumptions of ANOVA</td>
<td>3</td>
</tr>
<tr>
<td>4. Multiple regression, Type I and II SS</td>
<td>2</td>
</tr>
<tr>
<td>5. Experimental designs overview</td>
<td>1</td>
</tr>
<tr>
<td>6. The completely randomized design (CRD)</td>
<td>7</td>
</tr>
<tr>
<td>7. Factorial experiments</td>
<td>2</td>
</tr>
<tr>
<td>8. The nested design</td>
<td>2</td>
</tr>
<tr>
<td>9. Randomized complete block designs</td>
<td>3</td>
</tr>
<tr>
<td>10. Latin square designs</td>
<td>2</td>
</tr>
<tr>
<td>11. Split-plot designs</td>
<td>2</td>
</tr>
<tr>
<td>12. Repeated measures designs</td>
<td>3</td>
</tr>
</tbody>
</table>

Other: 2 midterms, one virtual computer-lab class 3
Software

Students will gain expertise in the use of statistical analysis computer software (primarily **SAS**).

Computer session: 09:00-11:00 Friday, Jan. 22

SAS University Edition

- Free for students and staff
- Can run on PCs, Macs or Linux workstations
- Contains a subset of all the functionality in SAS Foundation. Nonetheless, it includes most of the SAS products that you will need
- You do not have to be connected to the internet in order to run it

SAS 9.4 for Windows

- Licenses available from IST at $100/machine
Textbooks and reference material

The following manual will be used to learn the SAS system for analysis of data:

Apart from the manual, there is no required textbook for this course. However, you will benefit from owning a good text to use as a general reference not only for this course but for your research work.

Two good ones are

Useful texts

See also **SAS online reference manuals, including:**
The MIXED Procedure
The GLIMMIX Procedure
SAS version 9.4 reference materials (we use procedures described in Base SAS or in SAS/STAT)

http://support.sas.com/documentation/94/index.html
Assignments

Assignments will be given out at the last class of each week (usually Thursday) and will be due one week later.

Students are encouraged to work together on assignment problems. The assignment work that is submitted by each student, however, should be written up independently and be in each student’s own words.

Access assignment material through your UM Learn site for this course.
Student evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm exam 1, February 12</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm exam 2, March 12</td>
<td>25%</td>
</tr>
<tr>
<td>Assignments</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam (date TBD)</td>
<td>35%</td>
</tr>
</tbody>
</table>

All exams will be open book
Assessment of grades

You will get numeric scores for assignments and exams.

These scores will be weighted according to the above scheme to come up with a final numerical score.

This final score will be used to assign the letter grade which will appear on your transcript -- See section 4 of the General Academic Regulations of the University online calendar for a description of the letter grade system (2018-2019)

http://crscalprod1.cc.umanitoba.ca/Catalog/ViewCatalog.aspx

Final scores will be rounded, e.g., -76.4 becomes 76, thus a B; 76.5 becomes 77, thus a B+.

<table>
<thead>
<tr>
<th>Numerical score</th>
<th>Letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-100</td>
<td>A+</td>
</tr>
<tr>
<td>84-90</td>
<td>A</td>
</tr>
<tr>
<td>77-83</td>
<td>B+</td>
</tr>
<tr>
<td>70-76</td>
<td>B</td>
</tr>
<tr>
<td>65-69</td>
<td>C+</td>
</tr>
<tr>
<td>60-64</td>
<td>C</td>
</tr>
<tr>
<td>50-59</td>
<td>D</td>
</tr>
<tr>
<td>Under 50</td>
<td>F</td>
</tr>
</tbody>
</table>
Voluntary Withdrawal
The last day for voluntary withdrawal without academic penalty is **Mar. 31**

Assignments
For assignment work, I encourage you to work together on problems - the purpose of assignments is to understand the material.

You may also use the internet for background material.

The completed assignment work that you hand in must be in your own words.

If the internet, or other material is used in your work, this must be properly referenced.

Please refer to the University Calendar for statements on academic dishonesty including Plagiarism and Cheating. See section 8 of the General Academic Regulations of the University online calendar (2018-2019)

http://crscalprod1.cc.umanitoba.ca/Catalog/ViewCatalog.aspx

Examples of previous tests

Previous tests will be posted on the UM Learn site for this course.
ANSC 7500
Methodology in Agricultural and Food Sciences

Lecture Notes (Author: G.H. Crow)
Table of Contents

1. Introduction .. 5
 1.1 The Scientific Method ... 7
 1.2 Elements of design and analysis of experiments ... 9

2. Background / review .. 13
 2.1 Definitions .. 13
 2.2 The distribution of a variable .. 17
 2.3 Summarizing data .. 25
 2.4 Other measures to summarize variables ... 38
 2.5 The mean and variance of a linear function ... 43
 2.6 The distribution of sample means ... 48
 2.7 Testing hypotheses about means ... 50
 2.8 Alternatives when data don't conform to assumptions of the t-test 71
 2.9 The consequences of testing hypotheses .. 72
 2.10 Accuracy and Precision ... 77
 2.11 Maximum Likelihood ML) .. 78
 2.12 Main messages .. 83

3. Basic regression, least squares and analysis of variance .. 84
 3.1 Model concepts ... 84
 3.2 Example data and an explanatory model .. 87
 3.3 Estimating parameters of the model ... 88
 3.4 Partition of SS and testing hypotheses .. 93
 3.5 Matrix version of equations ... 98
 3.6 Standard errors of estimated model parameters ... 103
 3.7 Predictions and standard errors of predictions .. 105
 3.8 Residuals ... 110
 3.9 SAS program and output .. 112
 3.10 Assumptions and diagnostics .. 115
 3.11 Main messages .. 119

4. Multiple regression and analysis of variance ... 120
 4.1 Multi-factor models ... 120
 4.2 Example data and model .. 122
 4.3 Estimating parameters of the model .. 126
 4.4 The analysis of variance ... 128
 4.5 Which slope is significant, or are they both significant? .. 130
 4.6 Multiple regression using Proc Reg ... 138
 4.7 Main messages .. 140
5. Experimental designs - overview... 141
5.1 Completely Randomized Design (CRD).. 141
5.2 CRD with subsampling - a Nested Design.. 142
5.3 Randomized Complete Block Design (RCB).. 143
5.4 Latin Square.. 144
5.5 Split Plot Design.. 145
5.6 Statistical control of error - analysis of covariance................................. 147

6. The Completely Randomized Design (CRD)... 148
6.1 The Rhizobium example.. 149
6.2 Data and model.. 150
6.3 Partition of SS and Analysis of Variance (ANOVA).............................. 152
6.4 Standard errors of treatment means.. 158
5. Matrix calculations for model parameters and for SS, and estimable functions.. 159
6. SAS program to analyse Rhizobium data, Steel et al. page 141, SAS Manual page 97.... 169
6.7 Evaluating assumptions underlying the ANOVA................................. 172
6.8 Analysis to accommodate heterogeneous variances across treatment groups................................. 183
6.9 Is treatment a fixed or random effect? This affects how we interpret the treatment effects...... 187
6.10 Model I and comparison of means... 190
6.11 Contrasts.. 204
6.12 Main messages... 213

7. Factorial experiments... 214
7.1 A factorial set of treatments is a set where.. 214
7.2 Example... 215
7.3 The factorial questions.. 216
7.4 Direct analysis of factorial effects (the usual approach)........................ 219
7.5 Interpretation of hypothesis tests for main effects and interaction........... 236
7.6 Factorial experiments with more than two factors............................... 238
7.7 Consequences of unbalanced data in factorial experiments.................. 239
7.8 Main messages.. 248

8. The Nested Design... 249
8.1 The experimental unit, sampling and sub-sampling.............................. 249
8.2 Data and model.. 250
8.3 Calculations and Analysis of Variance.. 252
8.4 Standard errors of treatment means.. 255
8.5 Intraclass correlation... 256
8.6 SAS program and results.. 257
8.7 Optimum design - how many pots, plants?... 261
8.8 An equivalent analysis of the mint data... 263
8.9 Main messages.. 267
9. The Randomized Complete Block Design (RCB) .. 268
 9.1 A block is a set of experimental material that is uniform .. 268
 9.2 Examples of blocks and blocking techniques from several disciplines 269
 9.3 Numerical example .. 273
 9.4 Efficiency of designs .. 281
 9.5 SAS GLM program and output .. 283
 9.6 SAS Mixed procedure program and output .. 287
 9.7 The generalized RCB design ... 291
 9.8 SAS analysis as a mixed model ... 295
 9.9 Main messages ... 301

10. The Latin Square ... 302
 10.1 A design where 2 blocking factors are incorporated into the design 302
 10.2 Setting up a Latin Square experiment ... 305
 10.3 A 3 x 3 example of a Latin Square ... 306
 10.4 Replication of the Latin Square to increase replication and error df 314
 10.5 Incomplete Latin Squares .. 321
 10.6 Main messages ... 331

11. The Split Plot Design .. 332
 11.1 Use this design .. 332
 11.2 Example layouts .. 333
 11.3 Numerical example ... 337
 11.4 SAS program and output .. 343
 11.5 Main messages ... 349

12. Repeated Measures Designs .. 350
 12.1 Example of a repeated measures experiment with pigs ... 354
 12.2 Interpretations and explanations .. 361
 12.3 Main messages ... 365

13. The analysis of enumeration data .. 366
 13.1 Testing hypotheses .. 367
 13.2 Test hypotheses in two-cell tables ... 368
 13.3 Two-way contingency tables .. 371
 13.4 Main messages .. 378

References and further reading ... 379