
Thorsten Moenig
Daniel Bauer

Department of Risk Management and Insurance
Georgia State University

Email: dbauer@gsu.edu

47th Actuarial Research Conference

1 We gratefully acknowledge financial support from the Society of Actuaries (CAE grant)
Introduction

1. Risk-Neutral Valuation from Policyholder’s Perspective
2. Empirical Analysis of Prudential’s ASL II
3. Implications for Product Design: Neg. Option Values
4. Conclusions
Introduction
Motivation

- Exercise-dependent features in personal savings products increasingly popular
 - Surrender options
 - Grosen and Jørgensen, IME 2000
 - Zaglauer and Bauer, IME 2008
 - Withdrawal guarantees in Variable Annuities (VA)
 - Milevsky and Salisbury, IME 2006
 - Dai et al., MathFin 2007
 - Bauer et al., ASTIN 2008
 - GMWB for Life
 - Steinorth and Mitchell, 2011
 - Real option to transfer between subaccounts
 - Ulm, JRI 2006

- Policyholder behavior can affect valuation tremendously
 - Kling et al., 2011
Introduction

Motivation

- Exercise-dependent features in personal savings products increasingly popular
 ▶ Surrender options
 ◆ Grosen and Jørgensen, IME 2000
 ◆ Zaglauer and Bauer, IME 2008
 ▶ Withdrawal guarantees in Variable Annuities (VA)
 ◆ Milevsky and Salisbury, IME 2006
 ◆ Dai et al., MathFin 2007
 ◆ Bauer et al., ASTIN 2008
 ▶ GMWB for Life
 ◆ Steinorth and Mitchell, 2011
 ▶ Real option to transfer between subaccounts
 ◆ Ulm, JRI 2006

- Policyholder behavior can affect valuation tremendously
 ▶ Kling et al., 2011
Actuarial literature: optimal exercise based on arbitrage-pricing

Inconsistent with empirically observed patterns and prices

Reasons: arbitrage pricing assumptions may be violated

Life insurance market incomplete

Cannot sell – or repurchase – policies at risk-neutral value

Withdrawing means possibly giving up guarantees and other benefits

Market frictions

Taxation differs (1) between policyholder and company, and (2) across policyholder’s investment options

Ex.: Variable Annuities grow tax-deferred

Consider poster-child of exercise-dependent features

Withdrawal guarantees in Variable Annuities

But: General methodology applies to various personalized savings products with guarantees
Motivation

- Actuarial literature: optimal exercise based on arbitrage-pricing
 - Inconsistent with empirically observed patterns and prices

- Reasons: arbitrage pricing assumptions may be violated
 - Life insurance market incomplete
 - Cannot sell – or repurchase – policies at risk-neutral value
 - Withdrawing means possibly giving up guarantees and other benefits
 - Market frictions
 - Taxation differs (1) between policyholder and company, and (2) across policyholder’s investment options
 - Ex.: Variable Annuities grow tax-deferred

- Consider poster-child of exercise-dependent features
 - Withdrawal guarantees in Variable Annuities

- But: General methodology applies to various personalized savings products with guarantees
Introduction

Motivation

• Actuarial literature: optimal exercise based on arbitrage-pricing
 ▶ Inconsistent with empirically observed patterns and prices

• Reasons: arbitrage pricing assumptions may be violated
 ▶ Life insurance market incomplete
 * Cannot sell – or repurchase – policies at risk-neutral value
 * Withdrawing means possibly giving up guarantees and other benefits
 ▶ Market frictions
 * Taxation differs (1) between policyholder and company, and (2) across policyholder’s investment options
 * Ex.: Variable Annuities grow tax-deferred

• Consider poster-child of exercise-dependent features
 ➞ Withdrawal guarantees in Variable Annuities

• But: General methodology applies to various personalized savings products with guarantees
Recent troubles for insurers in US Variable Annuity market:

- *The Hartford* accepted $3.4B in TARP money
- *ING USA* downgraded to “A” after announcing $1.1B earnings charge against VAs
- Many insurers increased guarantee fees or dropped out of VA market

Similar problems in Japan

- Sumitomo Life forced to increase capital stock on Japanese VA portfolio
- Several large insurers withdrew from Japanese VA market

“The problem of the current (Japanese) VA market is not lack of demand, but lack of supply from willing insurers.” (Watson Wyatt)
Recent troubles for insurers in US Variable Annuity market:
- *The Hartford* accepted $3.4B in TARP money
- *ING USA* downgraded to “A” after announcing $1.1B earnings charge against VAs
- Many insurers increased guarantee fees or dropped out of VA market

Similar problems in Japan
- Sumitomo Life forced to increase capital stock on Japanese VA portfolio
- Several large insurers withdrew from Japanese VA market

“The problem of the current (Japanese) VA market is not lack of demand, but lack of supply from willing insurers.” (Watson Wyatt)
Motivation

- **Variable Annuities (VA)**
 - Popular long-term investment option (in U.S.)
 - Grow tax-deferred
 - Investment in stock portfolio / mutual fund
 - Risky payout profile
 - Guaranteed Minimum Benefits available for downside protection

- **Guaranteed Minimum Withdrawal Benefit (GMWB)**
 - Option to withdraw initial investment over time, regardless of account performance
Introduction

Motivation

- **Variable Annuities (VA)**
 - Popular long-term investment option (in U.S.)
 - Grow tax-deferred
 - Investment in stock portfolio / mutual fund
 - Risky payout profile
 - Guaranteed Minimum Benefits available for downside protection

- **Guaranteed Minimum Withdrawal Benefit (GMWB)**
 - Option to withdraw initial investment over time, regardless of account performance
• Simple example:
 - Policyholder invests $100K in mutual fund with insurer for 15 years
 - Right (but not obligation) to withdraw $7K each year
 - Until $100K have been withdrawn on aggregate
 - Can withdraw more than $7K, only if account value permits (and fee may apply)
 - Pay 50 bps of account value in guarantee fees annually
 - At death: bequestors receive account value
 - If alive at maturity: receive account value

• Previous literature, based on RNV: Optimal to
 - Keep withdrawing guaranteed amount
 - Surrender when VA account value large, to avoid guarantee fees
 - Derived prices significantly above market rates

• This is not what we find!
Motivation

Simple example:
- Policyholder invests $100K in mutual fund with insurer for 15 years
- Right (but not obligation) to withdraw $7K each year
- Until $100K have been withdrawn on aggregate
- Can withdraw more than $7K, only if account value permits (and fee may apply)
- Pay 50 bps of account value in guarantee fees annually
- At death: bequestors receive account value
- If alive at maturity: receive account value

Previous literature, based on RNV: Optimal to
- Keep withdrawing guaranteed amount
- Surrender when VA account value large, to avoid guarantee fees
- Derived prices significantly above market rates

This is not what we find!
Introduction

Motivation

• Simple example:
 ▶ Policyholder invests $100K in mutual fund with insurer for 15 years
 ▶ Right (but not obligation) to withdraw $7K each year
 ▶ Until $100K have been withdrawn on aggregate
 ▶ Can withdraw more than $7K, only if account value permits (and fee may apply)
 ▶ Pay 50 bps of account value in guarantee fees annually
 ▶ At death: bequestors receive account value
 ▶ If alive at maturity: receive account value

• Previous literature, based on RNV: Optimal to
 ▶ Keep withdrawing guaranteed amount
 ▶ Surrender when VA account value large, to avoid guarantee fees
 ▶ Derived prices significantly above market rates

• This is not what we find!

Thorsten Moenig
Revisiting the Risk-Neutral Approach to Optimal Policyholder Behavior
Motivation

• Life-cycle model to address market incompleteness
 ▶ Results driven by “Subjective” Value Maximization
 ★ Taxation matters
 ▶ See Moenig and Bauer (2011), presented at ARC 46

• This paper: Risk-neutral valuation from policyholder’s perspective
 ▶ Develop valuation framework with differing tax schemes
 ▶ Apply to VA + GMWB contracts
 ★ Consideration of taxes alone explains concurrent market rates
Motivation

- Life-cycle model to address market incompleteness
 - Results driven by “Subjective” Value Maximization
 - Taxation matters
 - See Moenig and Bauer (2011), presented at ARC 46

- This paper: Risk-neutral valuation from policyholder’s perspective
 - Develop valuation framework with differing tax schemes
 - Apply to VA + GMWB contracts
 - Consideration of taxes alone explains concurrent market rates
1 Introduction

2 Risk-Neutral Valuation from Policyholder’s Perspective
 Valuation of Cash-Flows with Differing Taxation Schemes
 Optimal Withdrawal Behavior

3 Empirical Analysis of Prudential’s ASL II

4 Implications for Product Design: Neg. Option Values

5 Conclusions
Cash-flow taxed differently than replicating portfolio

- Ross, JPE 1986: No universal pricing measure
- Valuation of cash-flows locally (i.e. agent-specific / subjective)

I develop subjective valuation approach, allowing for different assets with differing tax treatments

- Assume complete pre-tax market
- Determine time-t value (X_t) of post-tax cash flow X_{t+1}
 - Define X_t as amount needed to attain X_{t+1}, after taxes
 - Calculate pre-tax amount at time $t+1$ that yields X_{t+1} after taxes
 - “Discount” to time t with (unique) pre-tax measure Q

Proposition 1.

Any post-tax cash flow X_{t+1} can be valued uniquely at time t as

$$X_t = \mathbb{E}_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1}) \right] + \frac{\kappa}{1-\kappa} \cdot \mathbb{E}_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1} - X_t)^+ \right]. \quad (1)$$
Risk-Neutral Valuation from Policyholder’s Perspective

Valuation of Cash-Flows with Differing Taxation Schemes

- Cash-flow taxed differently than replicating portfolio
 - Ross, JPE 1986: No universal pricing measure
 - Valuation of cash-flows *locally* (i.e. agent-specific / subjective)

- I develop subjective valuation approach, allowing for different assets with differing tax treatments
 - Assume complete pre-tax market
 - Determine time-t value (X_t) of post-tax cash flow X_{t+1}
 - Define X_t as amount needed to attain X_{t+1}, after taxes
 - Calculate pre-tax amount at time $t + 1$ that yields X_{t+1} after taxes
 - “Discount” to time t with (unique) pre-tax measure \mathbb{Q}

Proposition 1.

Any post-tax cash flow X_{t+1} can be valued uniquely at time t as

$$X_t = \mathbb{E}_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1})^+ \right] + \frac{\kappa}{1 - \kappa} \cdot \mathbb{E}_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1} - X_t)^+ \right].$$

(1)
Risk-Neutral Valuation from Policyholder’s Perspective

Valuation of Cash-Flows with Differing Taxation Schemes

- Cash-flow taxed differently than replicating portfolio
 - Ross, JPE 1986: No universal pricing measure
 - Valuation of cash-flows *locally* (i.e. agent-specific / subjective)
- I develop subjective valuation approach, allowing for different assets with differing tax treatments
 - Assume complete pre-tax market
 - Determine time-t value (X_t) of post-tax cash flow X_{t+1}
 - Define X_t as amount needed to attain X_{t+1}, after taxes
 - Calculate pre-tax amount at time $t+1$ that yields X_{t+1} after taxes
 - “Discount” to time t with (unique) pre-tax measure Q

Proposition 1.

Any post-tax cash flow X_{t+1} can be valued uniquely at time t as

$$X_t = E_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1}) \right] + \frac{\kappa}{1 - \kappa} \cdot E_t^Q \left[\frac{B_t}{B_{t+1}} \cdot (X_{t+1} - X_t)^+ \right].$$ (1)
Optimal Withdrawals: \(t = 10, \ H_t = G_t = 100. \) (in 1000)

\[w_t^* = \max(\text{Guarantee}, X_t^-) \]

- \(w_t^* \) No Taxes
- \(w_t \)
- \(w_t \) Taxes
- \(\max(\text{Guarantee}, X_t^-) \)
Accounting for taxation has tremendous impact

<table>
<thead>
<tr>
<th></th>
<th>With Taxes</th>
<th>W/o Taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E^Q[\text{Fees}]$</td>
<td>5,708</td>
<td>3,299</td>
</tr>
<tr>
<td>$E^Q[\text{Excess-Fee}]$</td>
<td>162</td>
<td>10</td>
</tr>
<tr>
<td>$E^Q[\text{GMWB}]$</td>
<td>2,094</td>
<td>3,163</td>
</tr>
<tr>
<td>$E[\text{agg. w/d}]$</td>
<td>19,240</td>
<td>191,320</td>
</tr>
<tr>
<td>$P(G_T = 0)$</td>
<td>9.3%</td>
<td>83.6%</td>
</tr>
<tr>
<td>$P(G_T < P_0)$</td>
<td>13.0%</td>
<td>88.7%</td>
</tr>
</tbody>
</table>
Empirical Analysis of Prudential’s ASL II

1. Introduction
2. Risk-Neutral Valuation from Policyholder’s Perspective
3. Empirical Analysis of Prudential’s ASL II
 - Product Description
 - Results
4. Implications for Product Design: Neg. Option Values
5. Conclusions
Empirical Analysis of Prudential’s ASL II

Product Description

- Implement VA offered in U.S. market
 - *ASL II by Prudential Annuities Life Assurance Corporation*

- Key differences to simple GMWB example
 - Charges of 165 bps (of account value) p.a. (for M&E risk and Admin.)
 - Basic death benefit included
 - GMWB eligible for additional 35 bps p.a.
 - Includes step-up option
 - At maturity or death of PH: option to receive remaining benefits base, annuitized with zero interest
 - Guarantee fee waived after 7 years, if no withdrawals are made
 - Investment in riskiest eligible fund: *Pro Fund VP Bull*
 - Returns similar to *S&P500*

- Implement optimization with subjective RNV approach
Empirical Analysis of Prudential’s ASL II

Product Description

• Implement VA offered in U.S. market
 ▶ ASL II by Prudential Annuities Life Assurance Corporation

• Key differences to simple GMWB example
 ▶ Charges of 165 bps (of account value) p.a. (for M&E risk and Admin.)
 ▶ Basic death benefit included
 ▶ GMWB eligible for additional 35 bps p.a.
 ★ Includes step-up option
 ★ At maturity or death of PH: option to receive remaining benefits base, annuitized with zero interest
 ★ Guarantee fee waived after 7 years, if no withdrawals are made
 ▶ Investment in riskiest eligible fund: Pro Fund VP Bull
 ★ Returns similar to S&P500

• Implement optimization with subjective RNV approach
Empirical Analysis of Prudential’s ASL II

Product Description

- Implement VA offered in U.S. market
 - **ASL II** by Prudential Annuities Life Assurance Corporation
- Key differences to simple GMWB example
 - Charges of 165 bps (of account value) p.a. (for M&E risk and Admin.)
 - Basic death benefit included
 - GMWB eligible for additional 35 bps p.a.
 - Includes step-up option
 - At maturity or death of PH: option to receive remaining benefits base, annuitized with zero interest
 - Guarantee fee waived after 7 years, if no withdrawals are made
 - Investment in riskiest eligible fund: **Pro Fund VP Bull**
 - Returns similar to **S&P500**
- Implement optimization with subjective RNV approach
Empirical Analysis of Prudential’s ASL II

Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>$\sigma = 20%$</th>
<th>$r = 3%$</th>
<th>$r = 3%$</th>
<th>$\kappa = 20%$</th>
<th>No Taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma = 20%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including GMWB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E^Q[\text{Guarantee}]$</td>
<td>4,161</td>
<td>9,992</td>
<td>16,866</td>
<td>22,060</td>
<td>7,768</td>
</tr>
<tr>
<td>$E^Q[\text{Fees}]$</td>
<td>11,140</td>
<td>19,692</td>
<td>22,480</td>
<td>23,809</td>
<td>22,379</td>
</tr>
<tr>
<td>$E^Q[\text{Net Profit}]$</td>
<td>6,979</td>
<td>9,700</td>
<td>5,614</td>
<td>1,748</td>
<td>14,611</td>
</tr>
<tr>
<td>Surrender Rate</td>
<td>75.2%</td>
<td>37.0%</td>
<td>19.4%</td>
<td>20.1%</td>
<td>21.0%</td>
</tr>
</tbody>
</table>

	$\kappa = 20\%$	No Taxes				
Without GMWB						
$E^Q[\text{Guarantee}]$	799	1,202	1,870	2,535	922	41
$E^Q[\text{Fees}]$	8,579	8,858	9,485	9,702	12,884	1,636
$E^Q[\text{Net Profit}]$	7,780	7,657	7,615	7,167	11,962	1,596
Surrender Rate	88.2%	84.5%	79.2%	74.1%	75.1%	99.2%
$E^Q[\text{GMWB}]$	-802	2,044	-2,001	-5,419	2,648	206
Empirical Analysis of Prudential’s ASL II

Results

• Insurer collects decent surplus in both cases
 ▶ Benchmark case: ca. 7% of initial investment
 ▶ Might be used to cover administrative costs and other expenses

• 35 bps roughly fair price for GMWB
 ▶ Results sensitive to financial market parameters

• Significant loss when interest rates low and volatility high
 ▶ Might explain modifications of GMWBs and discontinuation of many VA products in recent years

• Without taxes: PH surrenders almost immediately
 ▶ Why invest in VA in the first place?

• High surrender rate
 ▶ PH withdraws when guarantee out of money
 ▶ Tax-deferred growth not generally worth 165 bps

• Also: time to maturity and income tax rate matter little
Results

- Insurer collects decent surplus in both cases
 - Benchmark case: ca. 7% of initial investment
 - Might be used to cover administrative costs and other expenses

- 35 bps roughly fair price for GMWB
 - Results sensitive to financial market parameters

- Significant loss when interest rates low and volatility high
 - Might explain modifications of GMWBs and discontinuation of many VA products in recent years

- Without taxes: PH surrenders almost immediately
 - Why invest in VA in the first place?

- High surrender rate
 - PH withdraws when guarantee out of money
 - Tax-deferred growth not generally worth 165 bps

- Also: time to maturity and income tax rate matter little
Empirical Analysis of Prudential’s ASL II

Results

- Insurer collects decent surplus in both cases
 - Benchmark case: ca. 7% of initial investment
 - Might be used to cover administrative costs and other expenses
- 35 bps roughly fair price for GMWB
 - Results sensitive to financial market parameters
- Significant loss when interest rates low and volatility high
 - Might explain modifications of GMWBs and discontinuation of many VA products in recent years
- Without taxes: PH surrenders almost immediately
 - Why invest in VA in the first place?
- High surrender rate
 - PH withdraws when guarantee out of money
 - Tax-deferred growth not generally worth 165 bps
- Also: time to maturity and income tax rate matter little
Empirical Analysis of Prudential’s ASL II

Results

- Insurer collects decent surplus in both cases
 - Benchmark case: ca. 7% of initial investment
 - Might be used to cover administrative costs and other expenses

- 35 bps roughly fair price for GMWB
 - Results sensitive to financial market parameters

- Significant loss when interest rates low and volatility high
 - Might explain modifications of GMWBs and discontinuation of many VA products in recent years

- Without taxes: PH surrenders almost immediately
 - Why invest in VA in the first place?

- High surrender rate
 - PH withdraws when guarantee out of money
 - Tax-deferred growth not generally worth 165 bps

- Also: time to maturity and income tax rate matter little
Empirical Analysis of Prudential’s ASL II

Results

- Insurer collects decent surplus in both cases
 - Benchmark case: ca. 7% of initial investment
 - Might be used to cover administrative costs and other expenses

- 35 bps roughly fair price for GMWB
 - Results sensitive to financial market parameters

- Significant loss when interest rates low and volatility high
 - Might explain modifications of GMWBs and discontinuation of many VA products in recent years

- Without taxes: PH surrenders almost immediately
 - Why invest in VA in the first place?

- High surrender rate
 - PH withdraws when guarantee out of money
 - Tax-deferred growth not generally worth 165 bps

- Also: time to maturity and income tax rate matter little
Empirical Analysis of Prudential’s ASL II

Results

- Insurer collects decent surplus in both cases
 - Benchmark case: ca. 7% of initial investment
 - Might be used to cover administrative costs and other expenses
- 35 bps roughly fair price for GMWB
 - Results sensitive to financial market parameters
- Significant loss when interest rates low and volatility high
 - Might explain modifications of GMWBs and discontinuation of many VA products in recent years
- Without taxes: PH surrenders almost immediately
 - Why invest in VA in the first place?
- High surrender rate
 - PH withdraws when guarantee out of money
 - Tax-deferred growth not generally worth 165 bps
- Also: time to maturity and income tax rate matter little
Implications for Product Design: Neg. Option Values

1. Introduction

2. Risk-Neutral Valuation from Policyholder’s Perspective

3. Empirical Analysis of Prudential’s ASL II

4. Implications for Product Design: Neg. Option Values
 - Mechanics
 - Description
 - Results

5. Conclusions
Implications for Product Design: Neg. Option Values

- Conventional wisdom: options have non-negative value
 - Option holder cannot be worse off than without the option
 - Issuer responsible for payout when option is exercised
- Assumes both parties have identical value functions
- Not true in many personal savings products
 - Incomplete market
 - Preferential tax treatment of underlying investments
- Investor’s optimal exercise strategy no longer worst-case for issuer
 - Decisions affected by preferences and/or taxation
 ⇒ True even if investor is value maximizer
- Negative option values become possible
Implications for Product Design: Neg. Option Values

- Conventional wisdom: options have non-negative value
 - Option holder cannot be worse off than without the option
 - Issuer responsible for payout when option is exercised

- Assumes both parties have identical value functions

- Not true in many personal savings products
 - Incomplete market
 - Preferential tax treatment of underlying investments

- Investor’s optimal exercise strategy no longer worst-case for issuer
 - Decisions affected by preferences and/or taxation
 → True even if investor is value maximizer

- Negative option values become possible
Implications for Product Design: Neg. Option Values

• Conventional wisdom: options have non-negative value
 ▶ Option holder cannot be worse off than without the option
 ▶ Issuer responsible for payout when option is exercised

• Assumes both parties have identical value functions

• Not true in many personal savings products
 ▶ Incomplete market
 ▶ Preferential tax treatment of underlying investments

• Investor’s optimal exercise strategy no longer worst-case for issuer
 ▶ Decisions affected by preferences and/or taxation
 ⇒ True even if investor is value maximizer

• Negative option values become possible
Implications for Product Design: Neg. Option Values

- Conventional wisdom: options have non-negative value
 - Option holder cannot be worse off than without the option
 - Issuer responsible for payout when option is exercised

- Assumes both parties have identical value functions

- Not true in many personal savings products
 - Incomplete market
 - Preferential tax treatment of underlying investments

- Investor’s optimal exercise strategy no longer worst-case for issuer
 - Decisions affected by preferences and/or taxation
 ⇒ True even if investor is value maximizer

- Negative option values become possible
Implications for Product Design: Neg. Option Values

Mechanics

- Suppose presence of one option affects exercise of other (explicit or implicit) options
 - Marginal value of option may depend on investor’s portfolio
 - Value can be much smaller than option payout
 - Combined options cheaper than sum of individual option prices
 - See e.g. Bauer et al., ASTIN 2008

- True even under arbitrage pricing
 - Nonetheless: Marginal option value cannot be negative

- Taxation introduces third party: government
 - Third party cannot affect exercise behavior directly
 - Stands to gain or lose from option
Implications for Product Design: Neg. Option Values

Mechanics

• Suppose presence of one option affects exercise of other (explicit or implicit) options
 ▶ Marginal value of option may depend on investor’s portfolio
 ▶ Value can be much smaller than option payout
 ▶ Combined options cheaper than sum of individual option prices
 ▶ See e.g. Bauer et al., ASTIN 2008

• True even under arbitrage pricing
 ▶ Nonetheless: Marginal option value cannot be negative

• Taxation introduces third party: government
 ▶ Third party cannot affect exercise behavior directly
 ▶ Stands to gain or lose from option
Mechanics

- Suppose presence of one option affects exercise of other (explicit or implicit) options
 - Marginal value of option may depend on investor’s portfolio
 - Value can be much smaller than option payout
 - Combined options cheaper than sum of individual option prices
 - See e.g. Bauer et al., ASTIN 2008

- True even under arbitrage pricing
 - Nonetheless: Marginal option value cannot be negative

- Taxation introduces third party: government
 - Third party cannot affect exercise behavior directly
 - Stands to gain or lose from option
Implications for Product Design: Neg. Option Values

Mechanics

- Option may induce exercise strategy with lower overall tax payments
 - Investor gains ✓
 - Government “loses” ✓
 - Issuer: ??

- In extreme (but possible) cases: issuer better off with writing the option
 - Both issuer and investor benefit from option
 - At financial expense of government
 - Option has negative marginal value to its issuer

- Example: Death benefit guarantee (GMDB) in Variable Annuity, when GMWB is present
 - Standard feature in most VA products
Implications for Product Design: Neg. Option Values

Mechanics

- Option may induce exercise strategy with lower overall tax payments
 - Investor gains ✓
 - Government “loses” ✓
 - Issuer: ??

- In extreme (but possible) cases: issuer better off with writing the option
 - Both issuer and investor benefit from option
 - At financial expense of government
 - Option has *negative* marginal value to its issuer

- Example: Death benefit guarantee (GMDB) in Variable Annuity, when GMWB is present
 - Standard feature in most VA products
Implications for Product Design: Neg. Option Values

Mechanics

- Option may induce exercise strategy with lower overall tax payments
 - Investor gains ✓
 - Government “loses” ✓
 - Issuer: ??

- In extreme (but possible) cases: issuer better off with writing the option
 - Both issuer and investor benefit from option
 - At financial expense of government
 - Option has *negative* marginal value to its issuer

- Example: Death benefit guarantee (GMDB) in Variable Annuity, when GMWB is present
 - Standard feature in most VA products
Implications for Product Design: Neg. Option Values

Description

- Demonstrate possibility of negative option values in two-period model
- Also in practice: Implement (slightly modified version of) Prudential’s ASL
 //
 - Includes GMWB, but no maturity benefits
- Methodology and parameter specifications from Essay 1
 - VA charges of 165 bps (of account value) p.a.
 - Plus 35 bps p.a. for GMWB, while applicable
Implications for Product Design: Neg. Option Values

Description

- Demonstrate possibility of negative option values in two-period model

- Also in practice: Implement (slightly modified version of) Prudential’s ASL

 - Includes GMWB, but no maturity benefits

- Methodology and parameter specifications from Essay 1

 - VA charges of 165 bps (of account value) p.a.

 - Plus 35 bps p.a. for GMWB, while applicable
Implications for Product Design: Neg. Option Values

Description

- Demonstrate possibility of negative option values in two-period model
- Also in practice: Implement (slightly modified version of) Prudential’s ASL
 - Includes GMWB, but no maturity benefits
- Methodology and parameter specifications from Essay 1
 - VA charges of 165 bps (of account value) p.a.
 - Plus 35 bps p.a. for GMWB, while applicable
Results

- Insurer increases profit by $250 when including GMDB
 - Guarantee value increases by $270
 - Fee payments increase by $520

\[
\begin{array}{cc|cc}
 & \text{With GMDB} & \text{Without GMDB} \\
\hline
\mathbb{E}^\mathbb{Q}[\text{Guarantee}] & 3,610 & 3,340 \\
\mathbb{E}^\mathbb{Q}[\text{Aggregate Fees}] & 11,000 & 10,480 \\
\mathbb{E}^\mathbb{Q}[\text{Net Profit}] & 7,390 & 7,140 \\
\end{array}
\]

⇒ GMDB has negative marginal value to insurer!
Implications for Product Design: Neg. Option Values

Results

- Insurer increases profit by $250 when including GMDB
 - Guarantee value increases by $270
 - Fee payments increase by $520

<table>
<thead>
<tr>
<th></th>
<th>With GMDB</th>
<th>Without GMDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E^Q[Guarantee]$</td>
<td>3,610</td>
<td>3,340</td>
</tr>
<tr>
<td>$E^Q[Aggregate Fees]$</td>
<td>11,000</td>
<td>10,480</td>
</tr>
<tr>
<td>$E^Q[Net Profit]$</td>
<td>7,390</td>
<td>7,140</td>
</tr>
</tbody>
</table>

⇒ GMDB has *negative* marginal value to insurer!
Conclusions

1 Introduction

2 Risk-Neutral Valuation from Policyholder’s Perspective

3 Empirical Analysis of Prudential’s ASL II

4 Implications for Product Design: Neg. Option Values

5 Conclusions
Conclusions

- Paper addresses discrepancy between actuarial literature and insurance practice for exercise-dependent life insurance products
 - In light of recent financial troubles for insurers due to VA portfolios
- Analyze optimal policyholder behavior for VA with withdrawal guarantee
 - (Novel) Arbitrage pricing approach
 * From policyholder’s perspective (i.e. accounting for taxation)
 - Applied to (simplified) sample contract as well as empirical VA
 - Valuation results in line with observed prices
- Implications for product design: option values can become negative
 - Ex.: Death benefit guarantees in VAs
 - Both insurer and investor better off with guarantee
 * At expense of government (due to lower tax obligations)
 - Might explain why they now come as standard features
Conclusions

- Paper addresses discrepancy between actuarial literature and insurance practice for exercise-dependent life insurance products
 - In light of recent financial troubles for insurers due to VA portfolios

- Analyze optimal policyholder behavior for VA w/ withdrawal guarantee
 - (Novel) Arbitrage pricing approach
 - From policyholder’s perspective (i.e. accounting for taxation)
 - Applied to (simplified) sample contract as well as empirical VA
 - Valuation results in line with observed prices

- Implications for product design: option values can become negative
 - Ex.: Death benefit guarantees in VAs
 - Both insurer and investor better off with guarantee
 - At expense of government (due to lower tax obligations)
 - Might explain why they now come as standard features
Conclusions

- Paper addresses discrepancy between actuarial literature and insurance practice for exercise-dependent life insurance products
 - In light of recent financial troubles for insurers due to VA portfolios
- Analyze optimal policyholder behavior for VA w/ withdrawal guarantee
 - (Novel) Arbitrage pricing approach
 - From policyholder’s perspective (i.e. accounting for taxation)
 - Applied to (simplified) sample contract as well as empirical VA
 - Valuation results in line with observed prices
- Implications for product design: option values can become negative
 - Ex.: Death benefit guarantees in VAs
 - Both insurer and investor better off with guarantee
 - At expense of government (due to lower tax obligations)
 - Might explain why they now come as standard features