Course Outline

Instructors
- Prof. Douglas Thomson, P.Eng. (A01) E3–455 EITC (204) 474–8797 Douglas.Thomson@umanitoba.ca
- Blair Yoshida, P.Eng. (A02) E3–411 EITC (204) 480–1402 Blair.Yoshida@umanitoba.ca

Office Hours
- After lectures or by appointment

Teaching Assistant
- Monsurul Alam alama@myumanitoba.ca
- Jasmin Coching cochingj@myumanitoba.ca
- Hannah Fogel fogelh@myumanitoba.ca
- Avishek Ghosh ghosha3@myumanitoba.ca
- Mohammad Reza rezamar@myumanitoba.ca
- Zohreh Sedaghati @myumanitoba.ca

Contact Hours
- 3 credit hours
- Lectures: 3 hours x 13 weeks/term = 39 hours
- Laboratories: 3 hours x 10 weeks = 30 hours

Prerequisites:
- Minimum grade of 60% in Pre-Calculus Mathematics 40S (or the former Mathematics 40S), Physics 40S, and Chemistry 40S

Course Website:
https://umanitoba.ca/umlearn

Courses Outline

ENG 1450 – Introduction to Electrical & Computer Engineering

Fall 2019

Course Objectives

This course introduces the fundamentals of electrical and computer engineering, including circuit analysis and selected topics on digital logic and electric motors. A number of standard electrical devices and components are presented in this course. The laboratory sessions involve the use of and familiarization with basic equipment and methods used in the workplace.

Course Content

The following topics will be covered:
- Fundamentals of electric circuits
- Kirchhoff’s laws, voltage and current division, independent sources
- Capacitors and inductors
- Sinusoidal AC circuits
- Introduction to operational amplifiers, semiconductor devices, optical devices, electric motors
- Boolean logic, logic gates, combinational logic.

Textbook


Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Requirements and Regulations

- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Important Dates

- Term Test: October 23rd, 2019 6:00pm – 8:00pm
- Voluntary Withdrawal Deadline: November 18th, 2019
- Thanksgiving Day: October 14th, 2019 No classes or examinations
- Remembrance Day: November 11th, 2019 No classes or examinations
- Fall Term Break: November 12th–15th, 2019 No classes or examinations

Updated: September 10, 2019
Learning Outcomes

1. Understand fundamental circuit theory and apply elementary circuit reduction and energy conservation techniques in the DC analysis of RLC circuits.
2. Apply circuit analysis techniques to solve electric circuits containing energy storage elements (L and C) in the sinusoidal AC steady state (phasor analysis).
3. Understand the representation of numbers in binary and hexadecimal notation and simple arithmetic operations in these bases. Understand basic Boolean algebra and logic, and apply this knowledge through the use of truth tables to design simple logic circuits from a written/verbal explanation of a problem.
4. Hands-on measurement and development of electric and digital circuits in a range of applications spanning the discipline.

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>KB</th>
<th>PA</th>
<th>IN</th>
<th>DE</th>
<th>ET</th>
<th>IT</th>
<th>CS</th>
<th>PR</th>
<th>IE</th>
<th>EE</th>
<th>EP</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

The final course grade is determined by the student’s performance on assignments, in laboratories, and on tests and examinations. 

*Students must complete all laboratories in order to be eligible to receive a passing grade.*

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University’s Intellectual Property Policy and the protection of privacy provisions of *The Freedom of Information and Protection of Privacy Act (Manitoba)*. Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.