Course Outline

ECE 4600 – Group Design Project

Course Objectives

Almost all professional engineers find themselves involved in some sort of team work for many aspects of their professional activities. Novel engineering research and design is performed by individuals in the context of projects or goals which require, or will require, the involvement of many other individuals. As such, it is important that engineering students learn to carry out research and design tasks as members of groups of individuals. To achieve this purpose the ECE 4600 Group Design Project course is mandatory in the Electrical and Computer Engineering curricula. The CEAB1 Accreditation Criteria and Procedures succinctly states the main goal of this course with regard to design content and team work:

- Engineering design integrates mathematics, basic sciences, engineering sciences and complementary studies in order to develop elements, systems and processes to meet specific needs. It is a creative, iterative, and often open-ended process subject to constraints which may be governed by standards or legislation to varying degrees depending upon the discipline. These constraints may relate to economic, health, safety, environmental, social or other pertinent interdisciplinary factors.

- The engineering curriculum must culminate in a significant design experience conducted under the professional responsibility of faculty licensed to practise engineering in Canada, preferably in the jurisdiction in which the institution is located. The significant design experiences is based on the knowledge and skills acquired in earlier course work and it preferably gives students an involvement in team work and project management.

Course Content

As well as the technical content of each group project, students will learn/exercise the following skills:

- Working in groups to achieve a substantial engineering design project
- Writing a detailed project proposal with realistic specifications
- Effective procedures for the division of labour amongst group members
- Creating and maintaining a schedule with milestones
- Maintaining an up-to-date Engineering Logbook
- Giving written and oral progress reports
- Writing a final engineering group report
- Making an oral group presentation of the project results

The course will also cover Engineering Law, where students will learn the meaning of law, contracts, expert witness, legal responsibility, and liability.

References

Updated: September 9, 2020
Evaluation Details

The final course grade is determined by the student’s performance on the design project both individually (Individual Mark), and with their group members (Group Mark). Students must pass each component making up the final mark in order to obtain a passing grade in the course. Course instructors may make adjustments to the Group Mark, in order to take into account variations in the degree of technical difficulty between different projects.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>5</td>
</tr>
<tr>
<td>3 Design Reviews (5% each)</td>
<td>15</td>
</tr>
<tr>
<td>Final Report</td>
<td>25</td>
</tr>
<tr>
<td>Project Final Summary (submitted with the final report)</td>
<td>5</td>
</tr>
<tr>
<td>Normalization between groups/projects (Course Co-ordinator)*</td>
<td>± 10</td>
</tr>
<tr>
<td>Engineering Record - milestone and final reviews (each 5%)</td>
<td>25</td>
</tr>
<tr>
<td>Proposal / Design Review oral presentation(s)</td>
<td>10</td>
</tr>
<tr>
<td>Final Oral Presentation</td>
<td>15</td>
</tr>
<tr>
<td>Individual group member evaluations by supervisor (zero-sum amongst group members.)*</td>
<td>± 10</td>
</tr>
</tbody>
</table>

* Determined by course coordinator in consultation with the project supervisor(s).

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Copyright Notice

All materials provided in this course are copyright and are provided under the fair dealing provision of the Canadian Copyright Act. This material may not be redistributed in any manner without the express written permission of the relevant copyright holder.

Requirements and Regulations

- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.
Learning Outcomes
1. Undertake a multi-person engineering project. Aspects include specifications, construction, and implementing - from concept, to design, to final implementation.
2. Planning and documenting an engineering project, including prediction/application of division of labour, scheduling, budgeting, progress report, and logbook.
3. Communicating engineering ideas and work to engineers and society at large, in written reports, oral presentations, and including comparison and evaluation of other group efforts.
4. Understanding of law, as pertaining to the practice of engineering, accountability, and the role and identification of intellectual property and show logged documentation of self/group work.

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>KB</th>
<th>PA</th>
<th>IN</th>
<th>DE</th>
<th>ET</th>
<th>IT</th>
<th>CS</th>
<th>PR</th>
<th>IE</th>
<th>EE</th>
<th>EP</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation
Students must pass each component making up the final mark in order to obtain a passing grade in the course. Course instructors may make adjustments to the Group Mark, in order to take into account variations in the degree of technical difficulty between different projects.

CEAB Graduate Attributes Assessed
DE.1 – Understands the complexities of an open-ended engineering design problem and defines appropriate objectives and constraints.
DE.2 – Uses an appropriate design process that considers all relevant factors (i.e., health & safety risks; standards; economic, environmental, cultural and societal considerations).
DE.3 – Develops/implements possible solutions to an open-ended design problem, leading to an appropriate recommendation.
DE.4 – Devises and implements a plan to evaluate a proposed design solution.
ET.2 – Evaluates and selects appropriate tools for a given scenario.
IT.2 – Predicts environmental and socio-economic impacts associated with engineering activities.
CS.2 – Designs and produces appropriate engineering documents (i.e., research reports, engineering reports, design documents, graphics).
CS.3 – Delivers effective technical presentations.
EE.1 – Demonstrates and/or applies knowledge of ethical principles.
EP.3 – Critically applies management tools and economics principles in engineering projects.
LL.1 – Applies appropriate knowledge to new situations.