Course Outline

Instructor
- Prof. Arkady Major, P.Eng.
 E3–559 EITC
 (204) 474–7541
 a.major@umanitoba.ca

Office Hours
• By appointment

Teaching Assistant
• Rubel Talukder
talukdrc@myumanitoba.ca

Contact Hours
• 4 credit hours
 • Lectures: 3 hours x 13 weeks = 39 hours
 • Laboratories: 3 hours x 5 weeks = 15 hours

Prerequisites:
• ECE 3600 Physical Electronics

Course Website:
https://umanitoba.ca/umlearn

ECE 4580 – Optoelectronics Fall 2019

Course Objectives
The course starts with an introduction to light and optics. Light sources of different types are discussed, including lasers and Light Emitting Diodes (LEDs). Light modulation and detection methods are also discussed. Finally the course covers fibreoptic systems including fibre optic communications.

Course Content
The following topics will be covered:
• Light: Properties, Vision, Radiometry and Photometry
• Optics: Mirrors, Lenses, Ray Tracing and Imaging
• Radiation Sources: Radiation Profiles, Gas Discharge, LEDs
• Lasers: Principles of Operation, Types of Lasers, Modes of Operation
• Laser Diodes: Principles of Operation, Structures, Main Characteristics
• Detectors: Thermal Detectors, Photodiodes, Sources of Noise
• Light Modulators: Electro-optics, Acousto-optics, Liquid Crystals
• Fibre Optics: Theory of Operation, Characteristics of Fibres
• Fibre Optic Communications

Textbook
Instructor course notes.

Other Resources

Academic Integrity
Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Requirements and Regulations
• Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
• It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
• No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
• Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Important Dates
- Term Test
 October 31st, 2019
 6:00PM–7:00PM
 E2–155 EITC
- Voluntary Withdrawal Deadline
 November 18th, 2019
- Thanksgiving Day
 October 14th, 2019
 No classes or examinations
- Remembrance Day
 November 11th, 2019
 No classes or examinations
- Fall Term Break
 November 12th–15th, 2019
 No classes or examinations

Updated: September 3, 2019
Page 1 of 2
Learning Outcomes

1. Understand fundamental properties of light and operation principles of basic optical components.
2. Demonstrate a mastery of basic mechanisms of light generation (including lasers) through detailed understanding and analysis of operation principles, characteristics, design architectures and trade-offs of semiconductor lasers.
3. Understand and compare operation principles, characteristics, design architectures and trade-offs of optical detectors and modulators of light.
4. Understand basic system design of fibre optic communication link and fundamental theory of fibre optics.
5. Hands-on testing, measurement and development of optical systems in a range of areas spanning the course.

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>KB</th>
<th>PA</th>
<th>IN</th>
<th>DE</th>
<th>ET</th>
<th>IT</th>
<th>CS</th>
<th>PR</th>
<th>IE</th>
<th>EE</th>
<th>EP</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

The final course grade is determined by the student’s performance on assignments, presentation, in laboratories, and on examinations. Students must complete all the laboratories in order to be eligible to receive a passing grade.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (%)</th>
<th>Method of Feedback</th>
<th>Learning Outcomes Evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>F, S</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Presentation</td>
<td>10</td>
<td>F, S</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Laboratories</td>
<td>10</td>
<td>F, S</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Term Test</td>
<td>20</td>
<td>F, S</td>
<td>1, 2</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50</td>
<td>S</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

* Method of Feedback: F - Formative (written comments and/or oral discussion), S - summative (numerical grade)

CEAB Graduate Attributes Assessed

KB.4 – Recalls and defines, and/or comprehends and applies, first principles and concepts in specialized engineering science.

IN.4 – Understands appropriate safe work procedures during experiments or laboratory exercises.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University’s Intellectual Property Policy and the protection of privacy provisions of The Freedom of Information and Protection of Privacy Act (Manitoba). Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.