Course Outline

Instructor
- Prof. Gabriel Thomas, P.Eng.
 E3–555 EITC
 (204) 474-6758
 Gabriel.Thomas@umanitoba.ca
- Prof. Sherif Sherif, P.Eng.
 (Laboratory Coordinator)
 E3–557 EITC
 (204) 474-6893
 Sherif.Sherif@umanitoba.ca

Course Objectives
Introduction to signals and systems; spectral analysis (Fourier Series) of continuous-time periodic signals; spectral analysis of aperiodic signals (Fourier Transform); the impulse response and convolution operation; frequency analysis of linear time-invariant systems; A/D conversion; sampling. Lab periods will be used to give students hands-on experience in programming many of the techniques covered in the theoretical parts of the course.

Course Content
The following topics will be covered:
- Introduction to signals and systems.
- Time-domain analysis of continuous/discrete-time systems linear shift-invariant systems.
- Spectral analysis of continuous-time signals: Fourier series and Fourier transform.
- Spectral analysis of discrete-time signals: Discrete Fourier Transform.

Textbook

Requirements and Regulations
- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Important Dates
- Term Test
 October 18th, 2019
 6:00PM – 8:00PM
- Voluntary Withdrawal Deadline
 November 18th, 2019
- Thanksgiving Day
 October 14th, 2019
 No classes or examinations
- Remembrance Day
 November 11th, 2019
 No classes or examinations
- Fall Term Break
 November 12th–15th, 2019
 No classes or examinations

Academic Integrity
Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evoke academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.
Learning Outcomes

1. Identify, distinguish and explain signals such as the unit step, impulse, and exponential that will be covered during the course as well as the basic definitions and properties of systems.
2. Analyze time-domain continuous and discrete-time systems and calculate the output response from linear systems.
3. Analyze and synthesize signals by Fourier series and Fourier transform.
4. Explain and solve problems related to applications such as filtering and communication systems.
5. Understand the basics of signal sampling and reconstruction.

Expected Competency Levels

Evaluation

The final course grade will be determined from a student's performance in laboratories, tests and on the final examination. All laboratories must be completed in order to receive a passing grade in this course.

CEAB Graduate Attributes Assessed

IN.1 – Gathers information (literature review, measurements, experiments, laboratory exercises) and analyzes data.

IT.2 – Contributes equitably to completion of group work.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University’s Intellectual Property Policy and the protection of privacy provisions of The Freedom of Information and Protection of Privacy Act (Manitoba). Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.