Course Outline

Instructor
- Prof. Dean McNeill, P.Eng.
 E2–390 EITC
 (204) 474–8963
 Dean.McNeill@umanitoba.ca

Office Hours
- By appointment

Teaching Assistant
- Abolfazl Babaei
 babaiea@myumanitoba.ca
- Nolan Evans
 evansn@myumanitoba.ca
- Najmeh Saffar
 saffarn@myumanitoba.ca

Contact Hours
- 4 credit hours
- Lectures:
 3 hours x 13 weeks = 39 hours
- Laboratories:
 3 hours x 5 weeks = 15 hours

Prerequisites:
- ECE 2220 Digital Logic

Course Website:
http://umanitoba.ca/umlearn

ECE 3610 – Microprocessor Systems

Course Objectives
This course introduces the student to fundamentals of microprocessors and microcomputers. The topics include: data flow, machine programming, architectures and instructions sets, stacks, subroutines, I/O and interrupts, interfacing fundamentals, and designing with microprocessors.

Course Content
The following topics will be covered:
- Review of number systems, logical operations, and digital circuits
- Macro/micro-instruction programmability
- Condition code register
- Assembly language programming
- Addressing modes
- Program writing methodology
- Transfer, arithmetic, and logic instruction
- The stack and subroutines
- Assemblers
- Integrated development environment
- Basic microprocessor interfacing
- Address decoding in memory mapped systems
- Memory mapped I/O and interrupts
- Multiple sources of interrupts and interrupt priority
- Memory accessing techniques and direct memory access
- Design examples.

Textbook

Learning Outcomes
1. Ability to design a simple microprocessing system.
2. Develop assembly language programs.
3. Identify, define, and describe the components of basic microprocessor architecture.
4. Apply interrupts and polling for I/O.
5. Create micro-operations for new macro-instructions.

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>KB</th>
<th>PA</th>
<th>IN</th>
<th>DE</th>
<th>ET</th>
<th>IT</th>
<th>CS</th>
<th>PR</th>
<th>IE</th>
<th>EE</th>
<th>EP</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEAB Graduate Attributes Assessed
KB.3 – Recalls and defines, and/or comprehends and applies, first principles and concepts in fundamental engineering science.
PA.3 – Analyzes and solves complex engineering problems.

Important Dates
- **Term Test**
 Tuesday, March 10th, 2020
 6:00PM – 8:00PM
 Room 172 Agriculture Bldg.
- **Voluntary Withdrawal Deadline**
 March 18th, 2020
- **Louis Riel Day**
 February 17th, 2020
 No classes or examinations
- **Spring Break**
 February 18th – 21st, 2020
 No classes or examinations
Evaluation

The final course grade is determined by the student’s performance in assignments, laboratories, term test, and the final examination. Students must complete all the laboratories in order to be eligible to receive a passing grade. Students must pass the final exam to be eligible to receive a passing grade.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value (%)</th>
<th>Method of Feedback</th>
<th>Learning Outcomes Evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>10</td>
<td>F, S</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Laboratories</td>
<td>15</td>
<td>F, S</td>
<td>2, 4</td>
</tr>
<tr>
<td>Term Test</td>
<td>25</td>
<td>F, S</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50</td>
<td>S</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

* Method of Feedback: F - Formative (written comments and/or oral discussion), S - summative (numerical grade)

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Requirements/Regulations

- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, smart watches, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University’s Intellectual Property Policy and the protection of privacy provisions of The Freedom of Information and Protection of Privacy Act (Manitoba). Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.

Supplemental Information

Retention