Course Outline

Instructor
- Blair Yoshida, P.Eng.
 E3–411 EITC
 Blair.Yoshida@umanitoba.ca
- Prof. Daniel Card, P.Eng.
 (Project Coordinator)
 E3–575 EITC
 Daniel.Card@umanitoba.ca

Office Hours
- By appointment

Teaching Assistant
- Meysam Ahmadi
 ahmadim3@myumanitoba.ca
- Isuru Jayawardana
 jayawari@myumanitoba.ca
- Mandip Pokharel
 pokharem@myumanitoba.ca
- King Man Siu
 siukm3@myumanitoba.ca
- Yanming Xu
 xuy34527@myumanitoba.ca

Contact Hours
- 5 credit hours
- Lectures:
 3 hours x 13 weeks = 39 hours
- Laboratories:
 3 hours x 11 weeks = 33 hours

Prerequisites:
- ENG 2262 Electric Circuits

Course Website:
http://umanitoba.ca/umlearn

ECE 2160 – Electronics 2E

Course Objectives
To understand the principles, circuit models and applications of amplifiers, real and ideal op amps, diodes and transistors, and to design simple circuits using these components.

Course Content
The following topics will be covered:
- Review of Circuit Theory
- Signals and Amplifiers
- Circuit Models of Amplifiers
- Frequency Response of Amplifier Blocks
- Ideal Op Amps and Applications
- Non-ideal behaviour in Op Amps
- Diode: Real and Ideal behaviours
- Diode: Circuits and Applications
- Bipolar Junction Transistors (BJT)
- MOS Field Effect Transistors (MOSFETs)
- BJT and FET Equivalent circuit Models and Amplifiers

CAD Tools
- National Instruments™ Multisim™
- Texas Instruments TINA-TI V9 (optional)
 http://www.ti.com/tool/tina-ti

Textbook

Requirements/Regulations
- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University’s General Academic Regulations, as well as Section 3 of the Faculty of Engineering Academic Regulations dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, smart watches, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Important Dates
- Term Test
 Thursday, February 14th, 2019
 6:00PM–8:00PM
 E3–270 EITC
- Voluntary Withdrawal Deadline
 March 20th, 2019
- Spring Break
 February 18th–22nd, 2019
 No classes or examinations

Updated: January 7, 2019
Learning Outcomes

1. Ideal Op Amps (inverting/non-inverting configurations, summers, voltage/current amplifiers, precision rectifiers, integrators/differentiators).
2. Non-ideal Op Amps (input voltage offset, input bias currents, slew rate, output voltage/current saturation).
3. Diodes (physics of pn-junction, models, rectifiers, voltage regulators).
4. Transistors (physical operation, models, I-V terminal characteristics, biasing schemes, common-emitter, common-base, collector amplifiers, two stage amplifiers).

Expected Competency Levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

Students must receive a minimum of 50% on the final examination in order to be eligible to receive a passing grade. Students who are unable to write term tests for medical (or other acceptable) reasons will have their final examination weighted to include the term test weighting. Students must complete all the laboratories in order to be eligible to receive a passing grade.

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the General Academic Regulations on Academic Integrity, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University’s Intellectual Property Policy and the protection of privacy provisions of The Freedom of Information and Protection of Privacy Act (Manitoba). Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.