

Course Outline

Instructor

- Prof. Ian Jeffrey, P.Eng.
E3-546 EITC
(204) 474-7476
ian.Jeffrey@umanitoba.ca
- *Include "ECE 4530" in the subject line of all correspondence.*

Office Hours

- Tuesdays and Thursdays
11:00AM–12:00PM,
or by appointment.

Teaching Assistant

- Julian Carneiro
carneirj@myumanitoba.ca

Contact Hours

- 4 credit hours
- Lectures:
3 hours x 13 weeks = 39 hours
- Laboratories:
3 hours x 5 weeks = 15 hours

Prerequisites:

- ECE 3760 Digital Systems Design I
- COMP 2140 Data Structures and Algorithms

Course Website:

<https://umanitoba.ca/umlearn>

Important Dates

- **Term Test**
October 30th, 2020
6:00PM–8:00PM
- **Voluntary Withdrawal Deadline**
November 23rd, 2020
- **Thanksgiving Day**
October 12th, 2020
No classes or examinations
- **Remembrance Day**
November 11th, 2020
No classes or examinations
- **Fall Term Break**
November 9th–13th, 2020
No classes or examinations

ECE 4530 – Parallel Processing

Fall 2020

IMPORTANT NOTICE – Mandatory Requirement to Report

This course will be conducted using remote instruction. Students who are accessing the course from outside of Canada or the USA **must notify the instructor** and indicate in which country they are located. Access to software may be restricted from some countries and failure to comply with these restrictions may result in criminal prosecution.

Course Objectives

The objectives of this course are to introduce students to High-Performance Computing (HPC) and to give students the ability to understand, analyze, design and implement parallel software solutions. Students will develop skills in writing message-passing parallel codes for accelerating computational problems. Core concepts such as parallel efficiency and load balancing will be covered. The course features detailed analysis of effective techniques for parallel processing of inherently parallel problems and provides a foundation for critically analyzing current and future HPC solutions. Additionally, General Purpose Graphics Processing Units (GPGPUs) will be introduced as parallel co-processors.

Course Content

The following topics will be covered:

- Basic parallel computer architectures
- Parallel computing using the Message-Passing Interface (MPI)
- Evaluating parallel programs
- Partitioning strategies
- Load balancing
- Algorithms and applications
- Co-processor acceleration using GPGPUs.

Laboratories

There will be five labs covering the following topics:

1. Point-to-point and collective communication using MPI
2. Embarrassingly parallel computations
3. Divide-and-conquer computations
4. Synchronous computations
5. Shared memory computing using OpenMP

Textbook

Parallel Programming, B. Wilkinson and M. Allen, 2nd Edition, Prentice Hall, 2005.
[Not required.]

Learning Outcomes

1. A working knowledge of the Message-Passing Interface (MPI) and its use in parallel software solutions.
2. The ability to analyze a problem and to design and implement parallel strategies for its solution with an emphasis on the trade-offs between time and memory efficiency.
3. Experience with various types of parallelization patterns/algorithms (divide-and-conquer, pipeline, load-balancing) and their application to real-world large-scale engineering computations and software.
4. Familiarity with different parallel hardware architectures (distributed/cluster computing, shared memory systems, and heterogeneous parallel systems) and their influence on parallel software design decisions.
5. The ability to apply parallel programming concepts and skills to emerging and future high-performance computing systems.

Copyright Notice

All materials provided in this course are copyright and are provided under the fair dealing provision of the Canadian Copyright Act. This material may not be redistributed in any manner without the express written permission of the relevant copyright holder.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University's *Intellectual Property Policy* and the protection of privacy provisions of *The Freedom of Information and Protection of Privacy Act (Manitoba)*. Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.