

Faculty of Agricultural and Food Sciences

Department of Biosystems Engineering

Course Outline

Instructor

Dr. David B. Levin (he/him) E1–354 EITC (204) 474–7429 david.levin@umanitoba.ca

Student Hours

By appointment: Send me an e-mail message any time (24/7).

I will respond within 24 hours with a day and time that we can meet online.

Teaching Assistant

Quin Litke?

Times

Lectures: Mondays, Wednesdays, and Fridays: 10:30 to 11:20 am

Tutorials: Tuesdays, 2:30 to 3:45

Location (both lectures & Tutorials)

Human Ecology Rm 207

Contact Hours

3 Credit hours

Lectures: 3 hours/week x 12 weeks = 36 hours

Course Website

http://umanitoba.ca/umlearn

Traditional Territories Acknowledgement

The University of Manitoba campuses are located on the original lands of the Anishinaabeg, Cree, Oji-Cree, Dakota, and Dene peoples, and on the homeland of the Métis Nation.

We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of reconciliation and collaboration.

BIOE 2590 Biology for Engineers (CRN 18593) Fall 2023

Course Objectives

This course will introduce students to the basic biological principles of cell structure and function, metabolism, genetics and heredity, bacteria and virus structure and function, and animal structure, function, and evolution, and provide students with an opportunity develop critical thinking skills.

Why this course is useful: This course is the "Bio" in Biosystems Engineering. As biosystems engineers, you will need a basic understanding of the structure, function, and energy transformations of biological systems at the cellular and organismal levels, and how these processes are affected by both internal and external environmental parameters.

Who should take this course?: This is a required course in the Biosystems Engineering program.

How this course fits into the curriculum: It is intended that students take this course during the first year after being accepted into the Department of Biosystems Engineering. As mentioned above, this course introduces students to the basic principles of biology.

Pre-Requisites: CHEM 1300 or University 1 Chemistry (Chem 1310)

Course Content

The lectures are divided into four modules: Module 1, Thermodynamics & Chemistry; Module 2, Cell Biology; Module 3, Genetics & Molecular Biology; and Module 4: Animal Diversity & Evolution.

Lecture #	Date	Lecture Topic/Title
0	September 6	Hand-out course Syllabus
1	September 8	Matter, Elements, Atoms, & Water
2	September 11	Carbon & the Molecular Diversity of life
3	September 13	Macromolecules
4	September 15	Metabolism & Energy
5	September 18	Enzymes & Metabolism
Review	September 20	Review to Lectures 1 to 5
In-class Test	September 22	Module 1 Test
6	September 25	The Cell
7	September 27	Membrane Structure & Function
8	September 29	Cellular Respiration I
No Class	October 2	National Truth & Reconciliation Day
9	October 4	Cellular Respiration II
10	October 6	Photosynthesis I
No Class	October 9	Thanksgiving
11	October 11	Photosynthesis II
12	October 13	Cell Communication
13	October 16	The Cell Cycle: Mitosis
14	October 18	Meiosis
Review	October 20	Review to Lectures 6 to 14
In-class Test	October 23	Module 2 Test
15	October 25	Mendelian Genetics I
16	October 27	Mendelian Genetics II
17	October 30	Chromosomes
18	November 1	The Molecular Basis of Inheritance
19	November 3	From Gene To Protein I
20	November 6	From Gene To Protein II
21	November 8	Genetics of Bacteria
22	November 10	Genetics of Viruses

Page 1 of 7 BIOE 2590 Fall 2023

No Class	November 13-17	Reading Week
Review	November 20	Review to Lectures 15 to 22
In-class Test	November 22	Module 3 Test
23	November 24	Intro to Animal Diversity
24	November 27	Invertebrate Evolution I
25	November 29	Invertebrate Evolution II
26	December 1	Invertebrate Evolution III
27	December 4	Vertebrate Evolution I
28	December 6	Vertebrate Evolution II
29	December 8	Vertebrate Evolution III
Review	December 11	Review to Lectures 23 to 30
In-class Test	To be Determined	Module 4 Test

Learning Outcomes

The Accreditation Detail for this course is 100% Natural Science

The Graduate Attribute for this is KB: A knowledge base for engineering

At the conclusion of the course, the student should be able to:

No.	Learning Outcome	Transferable Skill		
1	Understand the basic principles of biological systems	Scientific		
		knowledge		
2	Describe the basic structures of cells and the	Scientific		
	differences between prokaryotic and eukaryotic cells	knowledge		
3	Explain the differences between aerobic and	Scientific		
	anaerobic metabolism	knowledge		
4	Explain the basic structures and functions of viruses	Scientific		
	and bacteria	knowledge		
5	Explain the basic structures, functions, and evolution	Scientific		
	of animals	knowledge		
6	Distinguish correct statements from incorrect	Scientific		
	statements through critical assessment of the	knowledge		
	information presented			

Expected Competency Levels

Learning Outcome	Attribute*											
Outcome	KB-2**	PA	IN	DE	ET	IT	CS	PR	IE	EE	EP	LL
1	I											
2	I											
3	I											
4	I											
5	I											
6	I											

Page 2 of 7 BIOE 2590 Fall 2023

*Attributes:

KB A knowledge base for engineering

PA Problem analysis

IN Investigation

DE Design

ET Use of engineering tools

IT Individual and team work

CS Communication skills

PR Professionalism

IE Impact of engineering on society/ environment

EE Ethics and equity

EP Economics and project management

LL Life-long learning

** KB-2: Recalls, defines, comprehends and applies information and concepts in natural sciences

All courses in the Biosystems Engineering program are expected to contribute, in some way, to the development of one or more of the 12 graduate attributes that have been identified by the Canadian Engineering Accreditation Board. The table below shows the graduate attributes covered in BIOE 2590 in relation to the assessment element that contributes to your overall grade in the course. The final column indicates the approximate level of development in graduate attributes that is anticipated in this course.

Assessment Element	Value	Attributes Covered	Indicators being assessed	Level*
Class Module Tests	60%	Knowledge base for engineering	KB.2 Recalls and defines and/or comprehends and applies information and concepts in the natural sciences	I
On-line Assignments	40%	Knowledge base for engineering	KB.2 Recalls and defines and/or comprehends and applies information and concepts in the natural sciences	I

^{*}Level of Development Grade Attributes (I – Introductory; D = Intermediate; A = Advanced)

Expected Level of Development:

• I – Introductory

D – Developed

• A – Advanced

Page 3 of 7 BIOE 2590 Fall 2023

Grading Scale

Note: These boundaries represent a guide for the instructor and class alike. Provided that no individual student is disadvantaged, the instructor may vary any of these boundaries to ensure year-to-year grading consistency.

Letter	Mark	GPA
A+	92–100	4.15-4.50
A	85–91	3.83-4.14
B+	78-84	3.52-3.82
В	72–77	3.25-3.51
C+	66–71	2.98-3.24
С	60–65	2.71-2.97
D	51-59	2.25-2.70
F	< 50	<2.25

Important Dates

First day of class: Course Syllabus

Wednesday, September 6, 2023

Early Withdrawal Deadline

Tuesday, September 19, 2023

National Day for Truth and Reconciliation

Mon. October 2, 2023 No classes or examinations

Thanksgiving

Monday, October 9, 2023 No classes or examinations

Fall Term Break

November 13-17, 2023 No classes or examinations

Remembrance Day (observed)

Monday, Novemberm 13, 2023 No classes or examinations

Voluntary Withdrawal Deadline

Tuesday, November 21, 2023

Last Day of Class

Monday. December 11, 2023

Evaluation Method

The grading system for this course is based on a combination of four In-class Module Tests and four On-line assignments.

Evaluation Summary:

1) In Class Module Tests: 60% (4 x 15% each) 2) On-line assignments: 40% (4 x 10% each)

Total: 100%

Class tutorials/Module Reviews

On specified Tuesday afternoons, from 2:30 to 4:20 pm, we will have class tutorials in which we will review the course material leading up to the Module test.

Module Review Dates:

Date	Module Review	Topic
Wednesday, September 20 th	1	Review of Lectures 1 - 5
Friday, October 20 th	2	Review of Lectures 6 - 14
Monday, November 20 th	3	Review of Lectures 15 - 22
Monday, December 11 th	4	Review of Lectures 23 - 29

On-line Assignments

You will have access to the on-line Mastering Biology website that supports the Campbell text Book. Throughout the semester, for each Module, you will be given an online assignment that you must complete, and submit on-line for grading. The assignments will be available to you at mid-night Thursday evening before the Friday class on the dates indicated in the On-line Assignment Due Dates table, above. Access to the assignments closes at noon on the day of the in-class Module Test (see the Important Dates table, above). There are four on-line assignments, worth 40% of your final grade.

To access the on-line Assignments, you must purchase the Mastering Biology Code. This can be purchase with the hardcopy of the Campbell Biology textbook, or the Campbell Biology eBook, or you can purchase just the Mastering Biology Code. Prices for these are listed above, on page 1 of this syllabus.

To access the on-line Assignments, you have to register at the BIOE 2590 Mastering Biology site, BIOE 2590 Fall 2023, using the following code: levin62211. Instructions on how to register for Mastering Biology have been uploaded to the BIOE 2590 website on UM Learn.

On-line Assignment Due Dates:

On-Line Assignment #	Accessible on	Due on		
1	Friday, September 15 th	Friday, September 29 th		
2	Friday, October 6 th	Friday, October 20 th		
3	Friday, October 27 th	Friday, November 10 th		
4	Friday, November 24 th	Monday, December 11th		

Late Assignments: Assignments submitted after the due date will be docked 10% per school day.

Page 4 of 7 BIOE 2590 Fall 2023

Missed Assignments: Will receive a zero grade.

Tutorial Guest Lectures

There will be a series of guest lectures on various aspects of biology and biosystems engineering. These lectures will be presented by graduate students and will highlight the interface between microbiology, biotechnology, and genome sciences with biosystems and bioprocess engineering. Attendance of these lectures is obligatory, and there will be questions on the Module tests on the lectures. The dates, presenter names, and topics are as follows:

Guest Lecture	Lecture Date	Presenter	Topic
1	Tuesday, Sept. 12 th	Joe Ackerman	The Problem with Recycling
2	Tuesday, Sept 26 th	Quintin Litke	Biodegradable Food Packaging Materials
3	Tuesday, Oct. 10 th	Bruna Fermandez	Microbial remediation of oil pollution
4	Tuesday, Oct. 24th	Katherine Romero	Cloning and expression of polymer degrading enzymes
5	Tuesday, Oct. 31st	Daniel Flores Orozco	Anaerobic Digestion of Manure
6	Tuesday, Nov. 21st	Rumana Islam	Biodegradable polymers
7	Tuesday, Dec. 5 th	Madeline Stanley	Engineered Floating Wetlands and bioremediation

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the *General Academic Regulations* on *Academic Integrity*, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g., suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty. The guidelines stated in your University of Manitoba Graduate Calendar regarding University policy with respect to academic dishonesty (including plagiarism and cheating) and behaviour and absence from final exams will be followed. Students are advised to read sections in <u>7 Academic Integrity</u>, 4.2 Examinations: Personations and <u>5.1 General</u>: Academic Dishonesty the Graduate Calendar.

Requirements/Regulations

• Please copy the Instruction Team in all emails (Instructors and Teaching Assistants). All email communication must conform to the Communicating with Students university policy.

© Communicating with Students

- As the Instruction Team, we will do our best to respond to all emails **within 48 hours during working hours** (8:30 AM 5:30 PM Monday thru Friday). Ex. A Friday night email may not be responded to until the following Tuesday.
- Self-declaration forms may be completed for missed tests, exams, or assignments during short-term absences (≤72 hours) for extenuating circumstances. This form cannot be used for planned absences like vacations. It is also not to be used for longer-term absences, or ongoing circumstances (e.g., Authorized Withdrawals, Leaves of Absence, or other accommodations), which will still require additional documentation.

Self-Declaration Form for Brief or Temporary Absence

Self-Declaration Policy for Brief or Temporary Absences

• It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should familiarize themselves with the University's *General Academic Regulations*.

Page 5 of 7 BIOE 2590 Fall 2023

• Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g., Academic Integrity, Respectful Behaviour, Examinations, and related matters.

© Supplemental Resources

Deferred Final Examinations or Assignments

Students who miss the regularly scheduled writing of a final examination or assignment for valid medical or compassionate reasons will only be allowed to write a deferred exam or assignment if the Associate Dean (Undergraduate) approves the request. All requests for a deferred examination or assignment must be made within 48 hours of the missed exam of assignment and follow the procedure described on the Faculty website without exception. Course Instructors do not have the discretion to grant deferred final examinations or assignments.

Deferred Exam Policy (student experience website)

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the Instructor and the Department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University's *Intellectual Property Policy* and the protection of privacy provisions of *The Freedom of Information and Protection of Privacy Act (Manitoba)*. Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.

Copyright Notice

All materials provided in this course are copyrighted and delivered under the fair dealing provision of the Canadian Copyright Act. You may not redistribute this material in any manner without the express written permission of the relevant copyright holder(s).

Copyright Office

Page 6 of 7 BIOE 2590 Fall 2023