

Highlights

- Wheat biomass, yield and protein content were not impacted by same row seeding of living mulch
- Mulch performance was not equal across sites

Background

- Establishing a Living Mulch at the time of seeding a grain crop may allow for sufficient mulch growth and nitrogen fixation of legumes mulches
- A successful Living Mulch will maintain living roots in the ground without decreasing the performance of the grain crops it is seeded with over two or more years

Study Objective

To study the effect of mulch species and location and their interaction on wheat biomass, wheat yield and wheat protein

To study which mulches produce more biomass when seeded together with wheat at each location in the province

Table1: Seeding Information

Spacing and Depth Fertilizer	Same row, same depth as wheat 140 lb/ac Total N (soil + applied)
Seeding Rate	Wheat 250 pl/m2 Alfalfa 12 lb/ac Red Clover 10 lb/ac Sweet Clover 10 lb/ac White Clover 6 lb/ac P. Ryegrass 12lb/ac
Tillage Herbicide	Direct seeded Glyphosate burnoff

Treatment

Wheat only Control Sweet Clover Alfalfa Red Clover White Clover Perennial Ryegrass SEM p-value

Treatment

Wheat only Control Sweet Clover Alfalfa Red Clover White Clover Perennial Ryegrass SEM p-value

Arborg

- No impact on wheat establishment, biomass or yield
- Better Alfalfa emergence than other treatments
- Mid-summer Red Clover and White Clover largely died out.
- Fall PRG produced more biomass than Alfalfa and Sweet Clover

Establishment of Annual Crop-Living Mulch System

JESSICA FREY & JOANNE THIESSEN MARTENS

DEPARTMENT OF SOIL SCIENCE, UNIVERSITY OF MANITOBA, WINNIPEG MB

PRESENTING AUTHOR EMAIL: UMFREYJ@MYUMANITOBA.CA

Preliminary Results

ARBORG									
Wheat				Mulch					
Emergence	Summer Biomass	Yield*	Protein	Emergence		Summer Biomass	Fall Biomass		
pl/m2	kg/ha	bu/ac	%	pl/m2	Group	kg/ha	kg/ha	Group	
351	9786	92	15	-	-	-	I	-	
368	8682	91	15	18	b	14	84	b	
401	9006	88	14.2	90	а	121	452	ab	
374	8358	91	15.1	12	b	Insufficient to		-	
410	10155	94	15.1	25	b	biomass		-	
377	8543	83	14.9	37	b	159	1365	а	
27	695	6	0.3	11		34 20		03	
0.7	0.4	0.8	0.4	0.02		0.08	0.	03	

WheatMulch									
Emergence	Summer Biomass	Yield*	Protein	Emergence					
pl/m2	kg/ha	bu/ac	%	pl/m2					
234	7213	60	12.4	-					
224	6412	53	12.0	148					
248	7281	59	12.8	158					
254	7728	66	11.8	101					
251	7296	53	13.4	145					
253	7059	60	12.0	130					
21	588	5	0.7	20					
0.9	0.7	0.5	0.6	0.3					

Wheat					Mulch									
Emer	gence	Summer Biomass	Yield*	Protein	Emergence		Emergence		Emergence		Sum Bior	nmer nass	Fa Bion	all nass
pl/m2	Group	kg/ha	bu/ac	%	pl/m2	Group	kg/ha	Group	kg/ha	Group				
122	а	7774	60	12.9	-	-	-	-	-	-				
80	ab	7128	61	13.2	89	С	94	а	290	bc				
56	b	6715	53	13.6	193	ab	153	а	557	а				
81	ab	7291	57	12.9	128	bc	125	а	339	b				
76	ab	7357	58	13.0	206	а	10	b	118	С				
72	ab	6981	60	13.3	167	ab	11	b	297	b				
12		409	2	0.3	15		15		18		40			
0.	03	0.9	0.4	0.5	0.0007		0.0007		0.0	002	0.0	001		

Left: Aerial image, Roblin, July 2023 Right: Plot harvest, Roblin, August 2023

Melita

- No impact on wheat establishment, biomass, yield or protein No difference for mulch spring
- establishment Herbicide application
- killed mulch three weeks after establishment

R5 1 WADO

- protein
- Red Clover, White
- Sweet Clover and

CARBERRY								
	Mulch							
F	Summer	Viold *	Protein	Emor		Summer	Fall	
Emergence	Biomass	rielu		Emer	gence	Biomass	Biomass	
pl/m2	kg/ha	bu/ac	%	pl/m2 Group		kg/ha	kg/ha	
255	6733	37	12	Ι	-	-	_	
225	7713	38	12	110	а	820	273	
276	7120	39	12	148	а	895	301	
266	6733	33	13	49	bc	Incufficient to		
264	7532	40	12	22	С	hion		
280	6990	40	12	97	ab	DIOMASS		
2	571	2	1	13		337	83	
0.4	0.8	0.2	0.6	0.0002		0.9	0.8	
ROBLIN								
				В Д.				

Carberry No impact on wheat

establishment, biomass, yield or Sweet Clover and Alfalfa established better than NCD CD

Clover, and P. Ryegrass

Alfalfa produced comparable biomass in summer and in fall

Roblin

- Higher wheat emergence for wheatonly control above wheat-mulch crops No difference for
- wheat-only for summer biomass, yield, or protein
- White clover established better than other mulches
- Summer Sweet Clover, Red Clover and Alfalfa produced more

biomass than White Clover or P. Ryegrass

MANITOBA CROP **ALLIANCE**

Materials and Methods

- Field Studies at four Manitoba locations with different background soils and environments
- **Treatments of Living Mulch** species included Red Clover, White Clover, Sweet Clover, Alfalfa, and Perennial Ryegrass. **Experimental Design:** RCBD with
- four replications
- Data Collected: Wheat and mulch emergence plant counts; mid summer plant counts; mid summer biomass for wheat and mulch; wheat yield; wheat protein; fall plant counts; fall regrowth biomass

Conclusions

- Compared to wheat controls wheat emergence, wheat biomass, wheat yield and wheat protein were not significantly affected by the presence of the living mulch, even in dry conditions
- Establishment of living mulch species varied by site

Next Steps

- Contact herbicide applied prior to seeding of Year 2 canola
- Intention to set back mulch growth so that canola can establish, but then reestablish mulch
- Use of Plant Root Simulator Probes ® to measure nitrification from spring melt through seed set
- Biomass sampling of ¹⁵N in wheat and mulches
- Soil measurements of nitrate and potentially mineralizable nitrogen