Manitoba survey of herbicide-resistant weeds in 2022

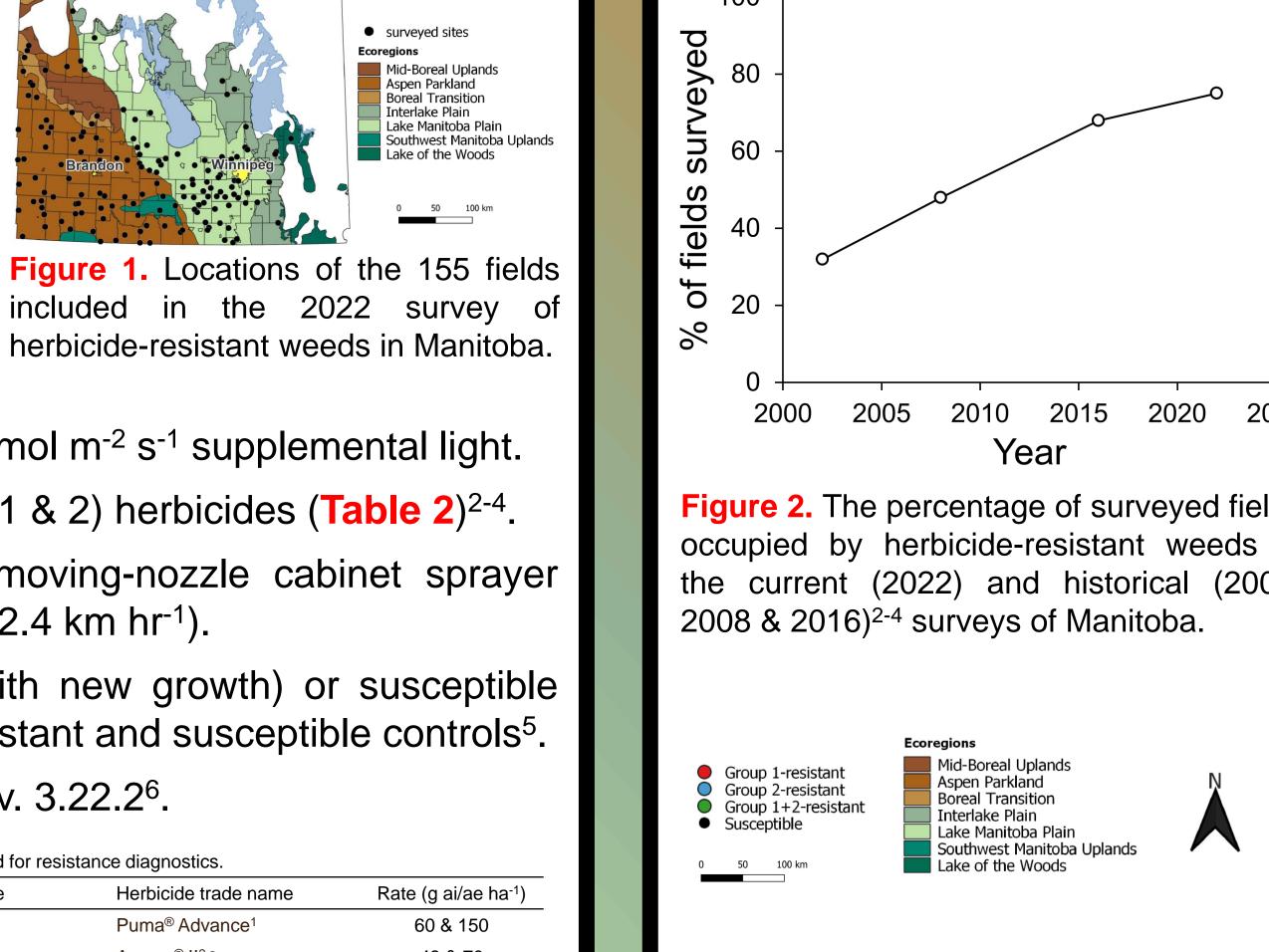
Canada


Charles M. Geddes^{1*}, Mattea M. Pittman¹, Kim Brown-Livingston², and Julia Y. Leeson³

*Charles.Geddes@agr.gc.ca X @charlesmgeddes

Lethbridge Research and Development Centre (RDC), Agriculture and Agri-Food Canada (AAFC), Lethbridge, AB; ²Manitoba Agriculture, Carman, MB; ³Saskatoon RDC, AAFC, Saskatoon, SK

Introduction and Objectives


Herbicide-resistant (HR) weeds are a growing concern for farmers worldwide¹, and Manitoba is no exception. The percentage of annual-cropped fields occupied by HR weeds in Manitoba increased from 32% in 2002² to 48% in 2008³ to 68% in 2016⁴. The most-recent Manitoba survey (2016) estimated that HR weeds cost Manitoba farmers about \$73 million annually in reduced crop yields and quality and increased weed control expenses⁴. Continued monitoring of the occurrence, distribution and impact of HR weeds is essential to understand how best to mitigate and manage this increasing threat to cropping systems. The objective of this study was to determine the occurrence, distribution, and impact of HR weeds in Manitoba in 2022, with particular focus on tier 1 acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides.

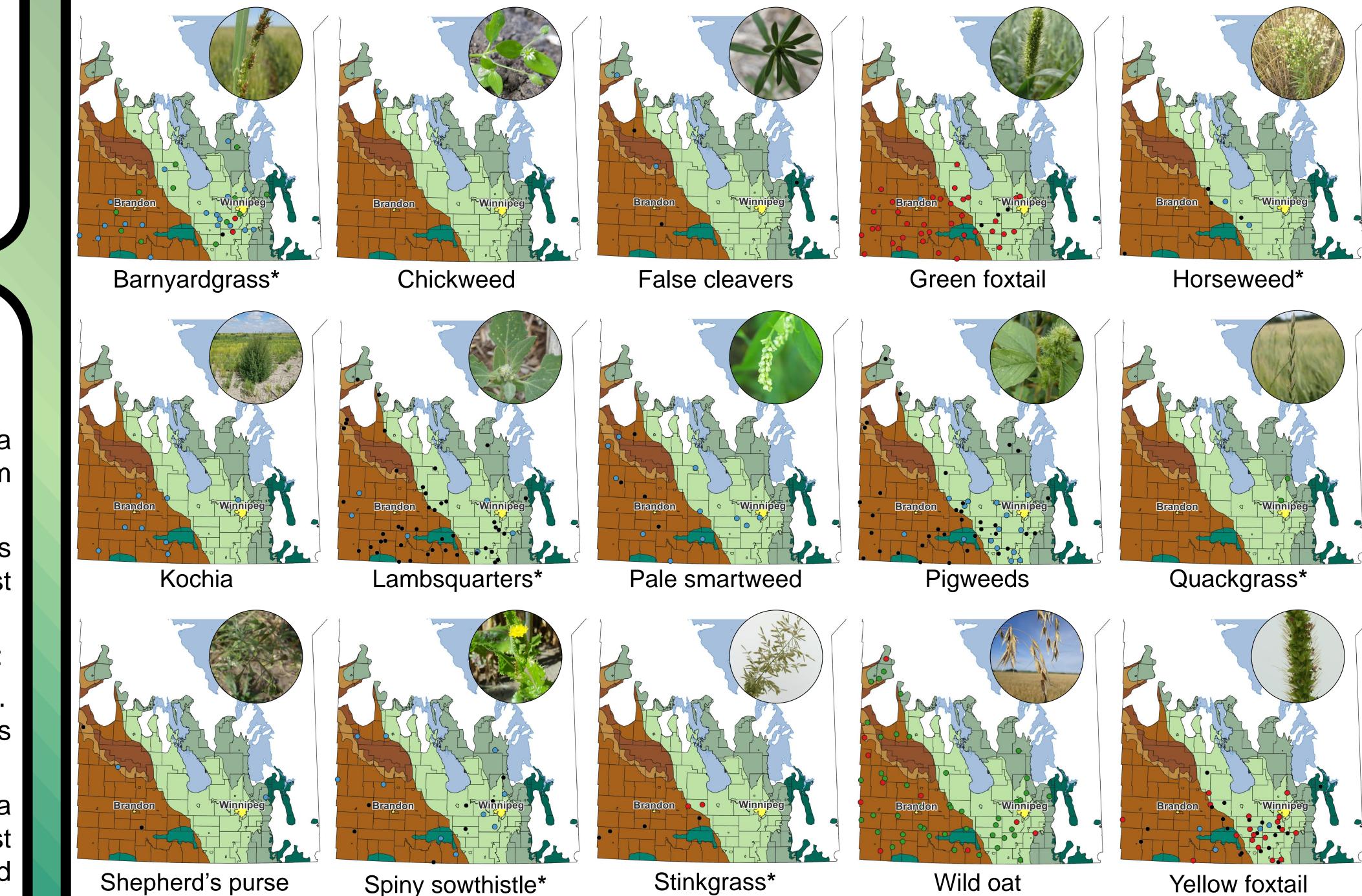

- 155 randomly-selected $\frac{1}{4}$ sections (65 ha) (Fig. 1) stratified based on cultivated area within each ecodistrict and seeded area of each crop (Table 1).
- Mature weed seeds collected from uncontrolled visible weed patches, and the patch area estimated.
- Seeded in 24×24×5 cm flats with soilless medium and watered daily in the greenhouse.
- 16 hr photoperiod with 20/18°C temperature and 230 µmol m⁻² s⁻¹ supplemental light.
- Tested with tier 1 ACCase- and ALS-inhibiting (Groups 1 & 2) herbicides (Table 2)²⁻⁴.
- Herbicides applied at the 2-4 leaf stage using a moving-nozzle cabinet sprayer (TeeJet[®] 8002VS nozzle; 275 kPa; 200 L ha⁻¹ solution; 2.4 km hr⁻¹).
- Plants characterized as resistant (no injury; injury with new growth) or susceptible (dead; nearly dead) 3 wk after treatment relative to resistant and susceptible controls⁵.
- Maps of resistance occurrence developed using QGIS v. 3.22.2⁶.

Table 1. Field allocation by crop and ecoregion

	Aspen Parkland ^a	Boreal	Lake Manitoba Plain	Interlake Plain ^c	All areas	% of all areas	Table 2. Herbicides used for resistance diagnostics.			
Crop		Transition ^b					Herbicide common name	Herbicide trade name	Rate (g ai/ae ha-1)	
			no. of fields			%	Fenoxaprop	Puma [®] Advance ¹	60 & 150	
Canola	22	7	18	4	51	33	Quizalofop	Assure [®] II ^{2,a}	48 & 70	
Wheat	25	1	18	5	49	31	Tralkoxydim	Liquid Achieve TM SC ^{3,b}	200 & 400	
Soybean	7	0	13	0	20	13	Clethodim	Centurion ^{®4,c}	90	
Oat	10	0	4	0	14	9	Imazamox	Solo [®] ADV ⁴	35	
Barley	5	0	1	1	7	5	Imazethapyr	Pursuit [®] 240 ^{4,d}	75	
Corn	1	0	4	2	7	5	Imazapyr	Arsenal [®] PowerLine ^{4,d}	72	
Field pea	3	0	1	0	4	3	Thifensulfuron + Tribenuron	Refine [®] SG ^{5,d}	15(10+5)	
Pinto bean	0	0	2	0	2	1	Chlorsulfuron	Telar [®] XP ^{1,d}	22 & 89	

	Grass:			%	%	ha	ha
	Wild oat	Avena fatua	ACCase	100	37	430,178	1,469,609
	Green foxtail	Setaria viridis	ACCase	88	27	848,363	1,170,531
	Yellow foxtail	Setaria pumila	ACCase	43	12	211,687	561,454
	Barnyardgrass*	Echinochloa crus-galli	ACCase	33	11	146,349	455,787
	Stinkgrass*	Eragrostis cilianensis	ACCase	33	3	157,530	157,530
	Quackgrass*	Elymus repens	ACCase	100	1	11	31,130
	Wild oat	Avena fatua	ALS	82	30	396,199	1,213,825
	Barnyardgrass	Echinochloa crus-galli	ALS	86	29	393,857	1,084,472
	Yellow foxtail	Setaria pumila	ALS	9	3	45,064	113,632
	Green foxtail	Setaria viridis	ALS	2	<1	40,103	40,103
	Quackgrass*	Elymus repens	ALS	100	1	11	31,130
25	Wild oat	Avena fatua	ACCase + ALS	82	30	396,197	1,183,768
_0	Barnyardgrass*	Echinochloa crus-galli	ACCase + ALS	37	12	182,667	479,032
	Quackgrass*	Elymus repens	ACCase + ALS	100	1	11	31,130
ds	Broadleaf:						
in	Kochia	Bassia scoparia	ALS	100	19	115,793	752,060
2,	Pigweeds.	Amaranthus spp. ^a	ALS	31	13	351,347	613,484
,	Pale smartweed	Persicaria lapathifolia	ALS	76	10	11,676	395,278
	Spiny sowthistle*	Sonchus asper	ALS	59	7	68,664	300,762
	Lambsquarters*	Chenopodium album	ALS	12	4	99,216	151,153
	Horseweed*	Erigeron canadensis	ALS	33	1	645	65,116
	False cleavers	Galium spurium	ALS	40	1	54,940	54,940
	Shepherd's purse	Capsella bursa-pastoris	ALS	50	1	21	44,098
	Chickweed	Stellaria media	ALS	100	<1	<1	34,351
	All HR Weeds			80	75	1,404,228	2,998,079

Sunflower	0	0	1	0	1	<1	G
Sub-total	73	8	62	12	155	100	C
% of total	47	5	40	8	100	100	Α Α
^a Includes SW M	IB Uplands; ^I	Includes Mid-	Boreal Uplands	; ^c Includes	Lake of the	e Woods	d A

nosate	Roundup WeatherMAX ^{®1}	900
cience; ⁴ BASF Canada	pScience Inc.; ² AMVAC Chemical Corp.; Inc.; ⁵ FMC of Canada Ltd. 5 v/v; ^b Turbocharge [®] @ 0.5% v/v; ^c Amigo [®]	

Results and Discussion

- 1,037 tests were conducted on 576 samples, representing 35 weed species.
- 75% of the fields were occupied by HR weeds in 2022 (Table 3; Fig. 2).
- The estimated area occupied by HR weed patches decreased from 2.2 million ha in 2016⁴ to 1.4 million ha in 2022, while the equivalent field area increased from 2.7 million ha in 2016 to 3.0 million ha in 2022 (Table 3).
- Based on previous grower estimates⁴ combined with the area where HR weeds were present before crop harvest in Manitoba in 2022 (Table 3), HR weeds cost Manitoba farmers about \$81 million annually.
- New issues of concern that warrant further investigation include (Table 3; Fig. 3):
 - Putative ACCase inhibitor-resistant barnyardgrass, quackgrass and stinkgrass.
 - Putative ALS inhibitor-resistant quackgrass, spiny sowthistle, lambsquarters and horseweed.
- This survey did not test for glyphosate or auxinic herbicide resistance in kochia due to limited mature seed present pre-harvest. However, the 2018 post-harvest survey of Manitoba documented glyphosate and dicamba resistance in 50% and 1% of the kochia populations sampled, respectively⁷.

Figure 3. Maps showing the locations of populations exhibiting resistance to acetyl-CoA carboxylase (ACCase)-, acetolactate synthase

Extreme precipitation caused flooding during the spring of 2022 and late seeding of crops. Late weed recruitment likely altered the weed communities present.

(ALS)-, and ACCase + ALS-inhibiting herbicides for each weed species with resistant biotypes in a 2022 survey of 155 fields in Manitoba.

*HR weeds with an asterisk were new for Manitoba and are therefore considered "putative-resistant" until confirmed using dose-response experiments.

MANITOBA

Pulse Soybean

Conclusions

Overall, 75% of the sampled fields in Manitoba had at least one HR weed biotype present before crop harvest. HR weeds occupied 1.4 million ha of cropland in 2022, equivalent to a field area of 3.0 million ha. HR weeds cost Manitoba farmers an estimated \$81 million annually in increased weed control expenses and reduced crop yields and quality. The growing impact of HR weeds warrants greater investment in integrated weed management programs.

¹Heap. 2022. <u>www.weedscience.org</u> ² Beckie et al. 2008. *Weed Technol* **22**:530-543 ³ Beckie et al. 2013. *Weed Technol* **27**:171-183 ⁴ Beckie et al. 2020. *Weed Technol* **34**:461-474 ⁵ Beckie et al. 2000. *Weed Technol* **14**:428-445 ⁶ QGIS Development Team. 2023. <u>www.qgis.org</u> Geddes et al. 2022. Can J Plant Sci 102:459-464

References

MANITOBA CROP ALLIANCE

We sincerely acknowledge the technical assistance of Shane Hladun. We also thank

Hugh Beckie for sharing his vast experience in herbicide resistance diagnostics.

WGRF

Manitoba 🦅

Manitoba Canola Grower Association

Government ______ of _____ Saskatchewan

Alberta Grains