

NSERC • Western Grains Research Foundation • Fertilizer Canada University of Manitoba

INTRODUCTION

- MB commonly apply • Farmers anhydrous in ammonia (82-0-0) in the fall, but this practice can result in N losses.
- Nitrification in the soil is a key factor influencing N losses.
- Use of nitrification Inhibitors (NIs) is a viable option to mitigate fall N losses.

OBJECTIVES

- Do Centuro and N-Serve with fall-applied AA can slow down the nitrification.
- Do use of NIs with fall-applied AA can impact crops yield and N uptake under commercial scale.

FIELDS SETUP

- Two farm-scale research trials were conducted in 2021-22 at Notre Dame (ND), and Manitou (MN) sites following a RCBD with five treatments and four replicate strips.
- Nitrogen was applied in October at ND and MN sites, at 80% of the recommended rate with and without Centuro (@ 21 L metric tonne⁻¹ N) and N-Serve (@ 0.95 L ac^{-1}), while the treatments without N addition (Control) and with full N rate were included.
- Soil (0-12") on and between the NH₃-banded rows was sampled during late fall, early and late spring for both sites, and was extracted for NH₄⁺-N and $NO_3^{-}-N$ conc.

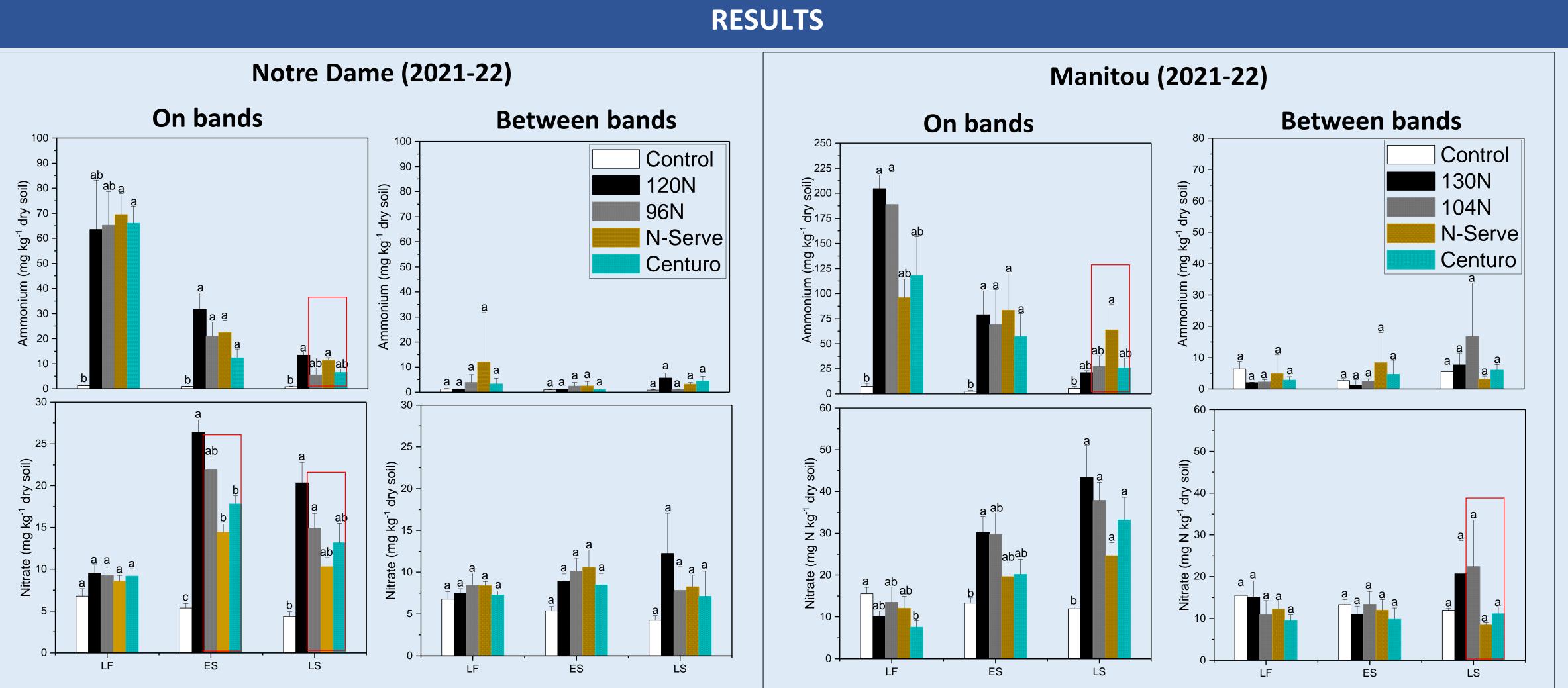


Fig 1. Effect of N-Serve and Centuro on soil (0-30 cm) ammonium (NH₄⁺-N) and nitrate (NO₃⁻-N) concentrations in the NH₃ banded rows and between the bands during late fall (LF), early spring (ES), and late spring (LS) at Notre Dame 2021-22 and Manitou 2021-22. Means with different letters within a sampling time are significantly different at α = 0.05 according to Tukey's multiple comparison procedure. Error bars indicate standard errors of the means (n=4).

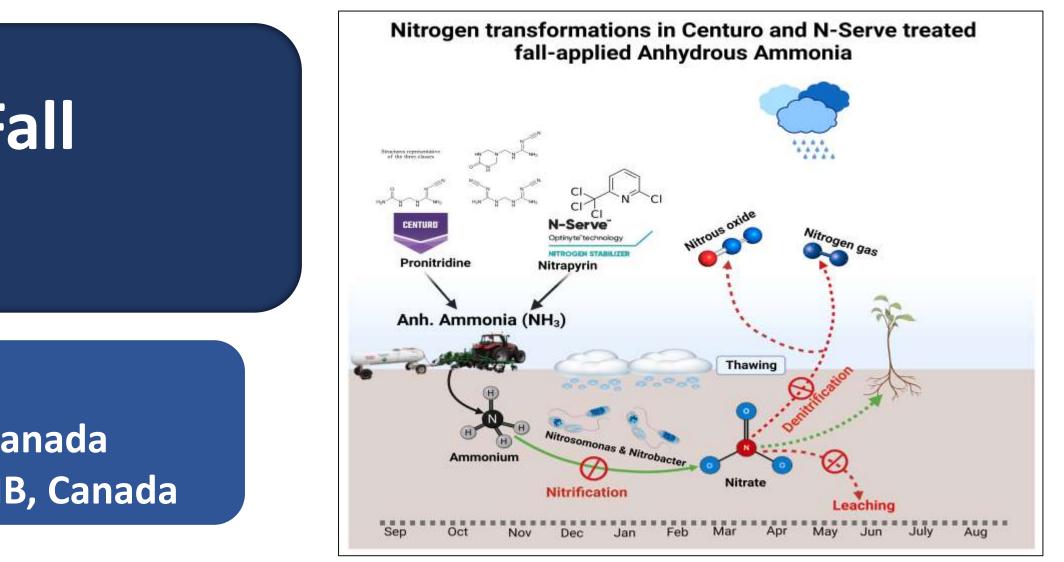
Farm-scale Research on Stabilization of Fall Anhydrous Ammonia in Manitoba

Muhammad Junaid Afzal¹, John Heard² and Mario Tenuta¹ ¹Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada ²Manitoba Ministry of Agriculture and Resource Development, Carman, MB, Canada

CONCLUSIONS

• Use of NIs increased an average NH_4^+ -N retention within the bands until late spring (8.9 and 51.4 mg kg⁻¹ dry soil) compared to untreated NH₃ (5.5, and 32.1 mg kg⁻¹ dry soil) at ND and MN sites, respectively.

• NIs led to a reduction in NO₃⁻-N accumulation between the bands until late spring (8.4 and 9.8 kg⁻¹ dry soil) compared to untreated NH₃ (8.7 and 22.4 kg⁻¹ dry soil) at ND and MN sites, respectively.


• No notable differences in agronomic yield and N uptake were observed between N treatments.

Acknowledgements

Thank you to our farmers: Steph Comte and Landon Freisen for hosting these field trials. Thanks to Tammy Jones from Corteva, Myron Kroeker from Rosenort Agro, and Jordan Karpinchick from Tone Ag-Consulting. Thank you to Norman Chabbert of Koch Ag and Steve Barron of Double Diamond for their cooperation and support.

References

Gao et al. (2021). Benefits and Risks for the Environment and Crop Production with Application of Nitrification Inhibitors in China. Journal of Soil Science and Plant Nutrition, 21(1), 497–512.

